Lösung 2.1:1a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 3: Zeile 3:
Using the distributivity rule, we can multiply the factor <math> 3x </math> into the bracket <math> (x-1) </math>. Each term in <math> (x-1)</math> is then to be multiplied by <math> 3x, </math>
Using the distributivity rule, we can multiply the factor <math> 3x </math> into the bracket <math> (x-1) </math>. Each term in <math> (x-1)</math> is then to be multiplied by <math> 3x, </math>
-
{{Displayed math||<math> 3x(x-1)=3x\cdot x - 3x \cdot 1 = 3x^2-3x\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math> 3x(x-1)=3x\cdot x - 3x \cdot 1 = 3x^2-3x\,\textrm{.}</math>}}

Version vom 08:20, 22. Okt. 2008


Using the distributivity rule, we can multiply the factor \displaystyle 3x into the bracket \displaystyle (x-1) . Each term in \displaystyle (x-1) is then to be multiplied by \displaystyle 3x,

\displaystyle 3x(x-1)=3x\cdot x - 3x \cdot 1 = 3x^2-3x\,\textrm{.}