Lösung 1.3:5b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we use <math>4 = 2\cdot 2 = 2^{2}</math>, the power rules give
If we use <math>4 = 2\cdot 2 = 2^{2}</math>, the power rules give
-
{{Displayed math||<math>4^{-\frac{1}{2}} = \bigl( 2^{2}\bigr)^{-\frac{1}{2}} = 2^{2\cdot (-\frac{1}{2})} = 2^{-1} = \frac{1}{2}\,</math>.}}
+
{{Abgesetzte Formel||<math>4^{-\frac{1}{2}} = \bigl( 2^{2}\bigr)^{-\frac{1}{2}} = 2^{2\cdot (-\frac{1}{2})} = 2^{-1} = \frac{1}{2}\,</math>.}}

Version vom 08:18, 22. Okt. 2008

If we use \displaystyle 4 = 2\cdot 2 = 2^{2}, the power rules give

\displaystyle 4^{-\frac{1}{2}} = \bigl( 2^{2}\bigr)^{-\frac{1}{2}} = 2^{2\cdot (-\frac{1}{2})} = 2^{-1} = \frac{1}{2}\,.