Lösung 1.3:5a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The number 4 can be written as <math>4=2\centerdot 2=2^{2}</math> and then, using the power rules, we obtain | The number 4 can be written as <math>4=2\centerdot 2=2^{2}</math> and then, using the power rules, we obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>4^{\frac{1}{2}} = \bigl(2^{2}\bigr)^{\frac{1}{2}} = 2^{2\cdot \frac{1}{2}} = 2^{1} =2\,</math>.}} |
Note: Another way to denote <math>4^{\frac{1}{2}}</math> is <math>\sqrt{4}</math> (the square root of 4); more on this in the section on roots later in the course. | Note: Another way to denote <math>4^{\frac{1}{2}}</math> is <math>\sqrt{4}</math> (the square root of 4); more on this in the section on roots later in the course. |
Version vom 08:18, 22. Okt. 2008
The number 4 can be written as \displaystyle 4=2\centerdot 2=2^{2} and then, using the power rules, we obtain
\displaystyle 4^{\frac{1}{2}} = \bigl(2^{2}\bigr)^{\frac{1}{2}} = 2^{2\cdot \frac{1}{2}} = 2^{1} =2\,. |
Note: Another way to denote \displaystyle 4^{\frac{1}{2}} is \displaystyle \sqrt{4} (the square root of 4); more on this in the section on roots later in the course.