Lösung 1.3:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
By using the power rules, we can rewrite the expression, | By using the power rules, we can rewrite the expression, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\left( \frac{2}{3} \right)^{-3} = \frac{2^{-3}}{3^{-3}} = \frac{\,\dfrac{1}{2^{3}}\,}{\,\dfrac{1}{3^{3}}\,} = \frac{\,\dfrac{1}{2^{3}}\cdot 3^{3}\,}{\,\dfrac{1}{\rlap{\,/}3^{3}}\cdot {}\rlap{\,/}3^{3}\,} = \frac{\,\dfrac{3^{3}}{2^{3}}\,}{1} = \frac{3^{3}}{2^{3}}\,,</math>}} |
and then carry out the calculation | and then carry out the calculation | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{3^{3}}{2^{3}} = \frac{3\cdot 3\cdot 3}{2\cdot 2\cdot 2} = \frac{27}{8}\,</math>.}} |
Version vom 08:16, 22. Okt. 2008
By using the power rules, we can rewrite the expression,
\displaystyle \left( \frac{2}{3} \right)^{-3} = \frac{2^{-3}}{3^{-3}} = \frac{\,\dfrac{1}{2^{3}}\,}{\,\dfrac{1}{3^{3}}\,} = \frac{\,\dfrac{1}{2^{3}}\cdot 3^{3}\,}{\,\dfrac{1}{\rlap{\,/}3^{3}}\cdot {}\rlap{\,/}3^{3}\,} = \frac{\,\dfrac{3^{3}}{2^{3}}\,}{1} = \frac{3^{3}}{2^{3}}\,, |
and then carry out the calculation
\displaystyle \frac{3^{3}}{2^{3}} = \frac{3\cdot 3\cdot 3}{2\cdot 2\cdot 2} = \frac{27}{8}\,. |