Lösung 1.2:4b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Multiply top and bottom of the double fraction by the reciprocal of the denominator,
Multiply top and bottom of the double fraction by the reciprocal of the denominator,
-
{{Displayed math||<math>\frac{\displaystyle\,\frac{2}{7}\,}{\displaystyle\,\frac{3}{8}\,} = \frac{\displaystyle\,\frac{2}{7}\cdot \frac{8}{3}\,}{\displaystyle\,\frac{\rlap{/}3}{\rlap{/}8}\cdot \frac{\rlap{/}8}{\rlap{/}3}\,}=\frac{2}{7}\cdot \frac{8}{3}\,</math>.}}
+
{{Abgesetzte Formel||<math>\frac{\displaystyle\,\frac{2}{7}\,}{\displaystyle\,\frac{3}{8}\,} = \frac{\displaystyle\,\frac{2}{7}\cdot \frac{8}{3}\,}{\displaystyle\,\frac{\rlap{/}3}{\rlap{/}8}\cdot \frac{\rlap{/}8}{\rlap{/}3}\,}=\frac{2}{7}\cdot \frac{8}{3}\,</math>.}}
The numerator and denominator on the right-hand side do not have a common factor, so the answer is
The numerator and denominator on the right-hand side do not have a common factor, so the answer is
-
{{Displayed math||<math>\frac{2}{7}\cdot \frac{8}{3}=\frac{2\cdot 8}{7\cdot 3}=\frac{16}{21}\,</math>.}}
+
{{Abgesetzte Formel||<math>\frac{2}{7}\cdot \frac{8}{3}=\frac{2\cdot 8}{7\cdot 3}=\frac{16}{21}\,</math>.}}
Note: It is also possible to learn a quick formula for double fractions which says that when the expression is rewritten with just one fraction sign, the denominators in the partial fractions change place,
Note: It is also possible to learn a quick formula for double fractions which says that when the expression is rewritten with just one fraction sign, the denominators in the partial fractions change place,
-
{{Displayed math||<math>\frac{\displaystyle\,\frac{2}{7}\,}{\displaystyle\,\frac{3}{8}\,}=\frac{2\cdot 8}{3\cdot 7}\,</math>.}}
+
{{Abgesetzte Formel||<math>\frac{\displaystyle\,\frac{2}{7}\,}{\displaystyle\,\frac{3}{8}\,}=\frac{2\cdot 8}{3\cdot 7}\,</math>.}}

Version vom 08:15, 22. Okt. 2008

Multiply top and bottom of the double fraction by the reciprocal of the denominator,

\displaystyle \frac{\displaystyle\,\frac{2}{7}\,}{\displaystyle\,\frac{3}{8}\,} = \frac{\displaystyle\,\frac{2}{7}\cdot \frac{8}{3}\,}{\displaystyle\,\frac{\rlap{/}3}{\rlap{/}8}\cdot \frac{\rlap{/}8}{\rlap{/}3}\,}=\frac{2}{7}\cdot \frac{8}{3}\,.

The numerator and denominator on the right-hand side do not have a common factor, so the answer is

\displaystyle \frac{2}{7}\cdot \frac{8}{3}=\frac{2\cdot 8}{7\cdot 3}=\frac{16}{21}\,.

Note: It is also possible to learn a quick formula for double fractions which says that when the expression is rewritten with just one fraction sign, the denominators in the partial fractions change place,

\displaystyle \frac{\displaystyle\,\frac{2}{7}\,}{\displaystyle\,\frac{3}{8}\,}=\frac{2\cdot 8}{3\cdot 7}\,.