Lösung 1.2:4a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
We calculate the double fraction by multiplying top and bottom by the reciprocal of the denominator, | We calculate the double fraction by multiplying top and bottom by the reciprocal of the denominator, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{\displaystyle\ \frac{3}{5}\vphantom{\Biggl(}\ }{\displaystyle\ \frac{7}{10}\vphantom{\Biggl(}\ } = \frac{\displaystyle\frac{3}{5}\cdot\frac{10}{7}\vphantom{\Biggl(}}{\displaystyle \frac{\rlap{/}7}{\rlap{\,/}10}\cdot \frac{\rlap{\,/}10}{\rlap{/}7}\vphantom{\Biggl(}} = \frac{3}{5}\cdot \frac{10}{7}\,</math>.}} |
The expression can now be simplified further by removing the common factor 5, | The expression can now be simplified further by removing the common factor 5, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{3}{5}\cdot \frac{10}{7} = \frac{3}{\rlap{/}5}\cdot \frac{2\cdot {}\rlap{/}5}{7} = \frac{3\cdot 2}{7} = \frac{6}{7}\,</math>.}} |
Version vom 08:15, 22. Okt. 2008
We calculate the double fraction by multiplying top and bottom by the reciprocal of the denominator,
\displaystyle \frac{\displaystyle\ \frac{3}{5}\vphantom{\Biggl(}\ }{\displaystyle\ \frac{7}{10}\vphantom{\Biggl(}\ } = \frac{\displaystyle\frac{3}{5}\cdot\frac{10}{7}\vphantom{\Biggl(}}{\displaystyle \frac{\rlap{/}7}{\rlap{\,/}10}\cdot \frac{\rlap{\,/}10}{\rlap{/}7}\vphantom{\Biggl(}} = \frac{3}{5}\cdot \frac{10}{7}\,. |
The expression can now be simplified further by removing the common factor 5,
\displaystyle \frac{3}{5}\cdot \frac{10}{7} = \frac{3}{\rlap{/}5}\cdot \frac{2\cdot {}\rlap{/}5}{7} = \frac{3\cdot 2}{7} = \frac{6}{7}\,. |