Lösung 1.2:3b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we divide the denominators in succession by 2, we see that | If we divide the denominators in succession by 2, we see that | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
24&=2\cdot 2\cdot 2\cdot 3\,,\\ | 24&=2\cdot 2\cdot 2\cdot 3\,,\\ | ||
40&=2\cdot 2\cdot 2\cdot 5\,,\\ | 40&=2\cdot 2\cdot 2\cdot 5\,,\\ | ||
Zeile 9: | Zeile 9: | ||
i.e. they all have a factor <math>2\cdot 2\cdot 2=8</math> in common, | i.e. they all have a factor <math>2\cdot 2\cdot 2=8</math> in common, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{1}{3\cdot 8}+\frac{1}{5\cdot 8}-\frac{1}{2\cdot 8}\,</math>.}} |
Hence we do not need to take 8 as a factor when we multiply the top and bottom of each fraction by the product of the other fractions' denominators, but instead we | Hence we do not need to take 8 as a factor when we multiply the top and bottom of each fraction by the product of the other fractions' denominators, but instead we | ||
obtain the lowest common denominator by multiplying top and bottom by the other factors, 2, 3 and 5, | obtain the lowest common denominator by multiplying top and bottom by the other factors, 2, 3 and 5, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{1\cdot 2\cdot 5}{3\cdot 8\cdot 2\cdot 5}+\frac{1\cdot 2\cdot 3}{5\cdot 8\cdot 2\cdot 3}-\frac{1\cdot 3\cdot 5}{2\cdot 8\cdot 3\cdot 5}=\frac{10}{240}+\frac{6}{240}-\frac{15}{240}\,</math>.}} |
The LCD is 240 and the answer is | The LCD is 240 and the answer is | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{10}{240}+\frac{6}{240}-\frac{15}{240}=\frac{10+6-15}{240}=\frac{1}{240}\,</math>.}} |
Version vom 08:14, 22. Okt. 2008
If we divide the denominators in succession by 2, we see that
\displaystyle \begin{align}
24&=2\cdot 2\cdot 2\cdot 3\,,\\ 40&=2\cdot 2\cdot 2\cdot 5\,,\\ 16&=2\cdot 2\cdot 2\cdot 2\,,\\ \end{align} |
i.e. they all have a factor \displaystyle 2\cdot 2\cdot 2=8 in common,
\displaystyle \frac{1}{3\cdot 8}+\frac{1}{5\cdot 8}-\frac{1}{2\cdot 8}\,. |
Hence we do not need to take 8 as a factor when we multiply the top and bottom of each fraction by the product of the other fractions' denominators, but instead we obtain the lowest common denominator by multiplying top and bottom by the other factors, 2, 3 and 5,
\displaystyle \frac{1\cdot 2\cdot 5}{3\cdot 8\cdot 2\cdot 5}+\frac{1\cdot 2\cdot 3}{5\cdot 8\cdot 2\cdot 3}-\frac{1\cdot 3\cdot 5}{2\cdot 8\cdot 3\cdot 5}=\frac{10}{240}+\frac{6}{240}-\frac{15}{240}\,. |
The LCD is 240 and the answer is
\displaystyle \frac{10}{240}+\frac{6}{240}-\frac{15}{240}=\frac{10+6-15}{240}=\frac{1}{240}\,. |