Lösung 1.2:2c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We divide up the two numerators into the smallest possible integer factors,
We divide up the two numerators into the smallest possible integer factors,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
12 &= 2\cdot 6 = 2\cdot 2\cdot 3\,,\\
12 &= 2\cdot 6 = 2\cdot 2\cdot 3\,,\\
14 &= 2\cdot 7\,\textrm{.} \\
14 &= 2\cdot 7\,\textrm{.} \\
Zeile 8: Zeile 8:
The expression can thus be written as
The expression can thus be written as
-
{{Displayed math||
+
{{Abgesetzte Formel||
<math>\frac{1}{2\cdot 2\cdot 3}-\frac{1}{2\cdot 7}\,</math>.}}
<math>\frac{1}{2\cdot 2\cdot 3}-\frac{1}{2\cdot 7}\,</math>.}}
Zeile 14: Zeile 14:
i.e. we leave out the common factor 2, so that the fractions have the lowest common denominator <math>2\cdot 2\cdot 3\cdot 7</math>,
i.e. we leave out the common factor 2, so that the fractions have the lowest common denominator <math>2\cdot 2\cdot 3\cdot 7</math>,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{1}{12}-\frac{1}{14} &= \frac{1}{2\cdot 2\cdot 3}-\frac{1}{2\cdot 7}\\[5pt]
\frac{1}{12}-\frac{1}{14} &= \frac{1}{2\cdot 2\cdot 3}-\frac{1}{2\cdot 7}\\[5pt]
&= \frac{1}{2\cdot 2\cdot 3}\cdot \frac{7}{7}-\frac{1}{2\cdot 7}\cdot \frac{2\cdot 3}{2\cdot 3}\\[5pt]
&= \frac{1}{2\cdot 2\cdot 3}\cdot \frac{7}{7}-\frac{1}{2\cdot 7}\cdot \frac{2\cdot 3}{2\cdot 3}\\[5pt]

Version vom 08:14, 22. Okt. 2008

We divide up the two numerators into the smallest possible integer factors,

\displaystyle \begin{align}

12 &= 2\cdot 6 = 2\cdot 2\cdot 3\,,\\ 14 &= 2\cdot 7\,\textrm{.} \\ \end{align}

The expression can thus be written as

\displaystyle \frac{1}{2\cdot 2\cdot 3}-\frac{1}{2\cdot 7}\,.

Here, we see that the denominators have a factor 2 in common. We multiply the top and bottom of the first fraction by 7 and the second by \displaystyle 2\cdot 3 i.e. we leave out the common factor 2, so that the fractions have the lowest common denominator \displaystyle 2\cdot 2\cdot 3\cdot 7,

\displaystyle \begin{align}

\frac{1}{12}-\frac{1}{14} &= \frac{1}{2\cdot 2\cdot 3}-\frac{1}{2\cdot 7}\\[5pt] &= \frac{1}{2\cdot 2\cdot 3}\cdot \frac{7}{7}-\frac{1}{2\cdot 7}\cdot \frac{2\cdot 3}{2\cdot 3}\\[5pt] &= \frac{7}{2\cdot 2\cdot 3\cdot 7} - \frac{2\cdot 3}{2\cdot 2\cdot 3\cdot 7}\\[5pt] &= \frac{7}{84} - \frac{6}{84}\,\textrm{.} \end{align}

The lowest common denominator is 84.