Lösung 1.2:1a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
In order for fractions to be added together, they need first to be rewritten so that they have the same denominator, and we do this by multiplying the numerator and denominator of each fraction by the denominator of the other fraction. So,
In order for fractions to be added together, they need first to be rewritten so that they have the same denominator, and we do this by multiplying the numerator and denominator of each fraction by the denominator of the other fraction. So,
-
{{Displayed math||<math>\frac{7\cdot 7}{4\cdot 7}+\frac{11\cdot 4}{7\cdot 4}=\frac{49}{28}+\frac{44}{28}\,</math>.}}
+
{{Abgesetzte Formel||<math>\frac{7\cdot 7}{4\cdot 7}+\frac{11\cdot 4}{7\cdot 4}=\frac{49}{28}+\frac{44}{28}\,</math>.}}
Now, the numerators can be added together,
Now, the numerators can be added together,
-
{{Displayed math||<math>\frac{49}{28}+\frac{44}{28}=\frac{49+44}{28}=\frac{93}{28}\,</math>.}}
+
{{Abgesetzte Formel||<math>\frac{49}{28}+\frac{44}{28}=\frac{49+44}{28}=\frac{93}{28}\,</math>.}}

Version vom 08:13, 22. Okt. 2008

In order for fractions to be added together, they need first to be rewritten so that they have the same denominator, and we do this by multiplying the numerator and denominator of each fraction by the denominator of the other fraction. So,

\displaystyle \frac{7\cdot 7}{4\cdot 7}+\frac{11\cdot 4}{7\cdot 4}=\frac{49}{28}+\frac{44}{28}\,.

Now, the numerators can be added together,

\displaystyle \frac{49}{28}+\frac{44}{28}=\frac{49+44}{28}=\frac{93}{28}\,.