Lösung 1.1:7d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (decimal comma --> decimal point)
Zeile 1: Zeile 1:
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
-
There is, admittedly, a repeating pattern in the decimal expansion
+
Obwohl die Dezimalbruchentwicklung ein Muster folgt
::<math>0\textrm{.}\underline{10}\ \underline{100}\ \underline{1000}\ \underline{10000}\ \underline{100000}\,\ldots</math>
::<math>0\textrm{.}\underline{10}\ \underline{100}\ \underline{1000}\ \underline{10000}\ \underline{100000}\,\ldots</math>
{{NAVCONTENT_STEP}}
{{NAVCONTENT_STEP}}
-
but for it to be a rational number, the decimal expansion must, after a certain decimal place, consist of a fixed combination of digits that repeat themselves indefinitely. There is no such repetition in the decimal expansion given above (the digit groups 10, 100, 1000, 10000,&nbsp;... increase in size all the time). The number is therefore not rational.
+
handelt es sich nicht um eine rationale Zahl. Die Dezimalbruchentwicklung ist nämlich nicht periodisch, und deshalb ist eine Kanzellierung der Dezimalen wie in '''b''' und '''c''' nicht möglich.
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}
<!--<center> [[Image:1_1_7d.gif]] </center>-->
<!--<center> [[Image:1_1_7d.gif]] </center>-->

Version vom 14:07, 18. Okt. 2008