Lösung 4.4:8b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Suppose that
+
Suppose that <math>\cos x\ne 0</math>, so that we can divide both sides by <math>\cos x</math> to obtain
-
<math>\text{cos }x\ne 0</math>
+
-
, so that we can divide both sides by
+
-
<math>\text{cos }x</math>
+
-
to obtain
+
-
+
{{Displayed math||<math>\frac{\sin x}{\cos x} = \sqrt{3}\qquad\text{i.e.}\qquad \tan x = \sqrt{3}\,\textrm{.}</math>}}
-
<math>\frac{\sin x}{\cos x}=\sqrt{3}</math>
+
-
i.e.
+
-
<math>\tan x=\sqrt{3}</math>
+
 +
This equation has the solutions <math>x = \pi/3+n\pi</math> for all integers ''n''.
-
This equation has the solutions
+
If, on the other hand, <math>\cos x=0</math>, then <math>\sin x = \pm 1</math> (draw a unit circle) and the equation cannot have such a solution.
-
<math>x=\frac{\pi }{3}+n\pi </math>
+
-
for all integers
+
-
<math>n</math>.
+
-
 
+
-
If, on the other hand,
+
-
<math>\text{cos }x=0</math>, so
+
-
<math>\text{sin }x\text{ }=\pm \text{1}</math>
+
-
( draw a unit circle) and the equation cannot have such a solution.
+
Thus, the equation has the solutions
Thus, the equation has the solutions
-
 
+
{{Displayed math||<math>x = \frac{\pi}{3}+n\pi\qquad</math>(''n'' is an arbitrary integer).}}
-
<math>x=\frac{\pi }{3}+n\pi </math>
+
-
(
+
-
<math>n</math>
+
-
an arbitrary integer).
+

Version vom 08:15, 14. Okt. 2008

Suppose that \displaystyle \cos x\ne 0, so that we can divide both sides by \displaystyle \cos x to obtain

Vorlage:Displayed math

This equation has the solutions \displaystyle x = \pi/3+n\pi for all integers n.

If, on the other hand, \displaystyle \cos x=0, then \displaystyle \sin x = \pm 1 (draw a unit circle) and the equation cannot have such a solution.

Thus, the equation has the solutions

Vorlage:Displayed math