Lösung 4.4:6a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
If we move everything over to the left-hand side,
If we move everything over to the left-hand side,
 +
{{Displayed math||<math>\sin x\cos 3x-2\sin x=0</math>}}
-
<math>\sin x\cos 3x-2\sin x=0</math>
+
we see that both terms have <math>\sin x</math> as a common factor which we can take out,
 +
{{Displayed math||<math>\sin x (\cos 3x-2) = 0\,\textrm{.}</math>}}
-
we see that both terms have
+
In this factorized version of the equation, we see the equation has a solution only when one of the factors <math>\sin x</math> or <math>\cos 3x-2</math> is zero. The factor <math>\sin x</math> is zero for all values of ''x'' that are given by
-
<math>\text{sin }x\text{ }</math>
+
-
as a common factor which we can take out:
+
 +
{{Displayed math||<math>x=n\pi\qquad\text{(n is an arbitrary integer)}</math>}}
-
<math>\text{sin }x\text{ }\left( \cos 3x-2 \right)=0</math>
+
(see exercise 3.5:2c). The other factor <math>\cos 3x-2</math> can never be zero because the value of a cosine always lies between <math>-1</math> and <math>1</math>, which gives that the largest value of <math>\cos 3x-2</math> is <math>-1</math>.
-
 
+
-
 
+
-
In this factorized version of the equation, we see the equation has a solution only when one of the factors
+
-
<math>\text{sin }x</math>
+
-
or
+
-
<math>\cos 3x-2</math>
+
-
is zero. The factor
+
-
<math>\text{sin }x</math>
+
-
is zero for all values of
+
-
<math>x</math>
+
-
that are given by
+
-
 
+
-
 
+
-
<math>x=n\pi </math>
+
-
(
+
-
<math>n</math>
+
-
an arbitrary integer)
+
-
 
+
-
(see exercise 3.5:2c). The other factor
+
-
<math>\cos 3x-2</math>
+
-
can never be zero because the value of a cosine always lies between
+
-
<math>-\text{1 }</math>
+
-
and
+
-
<math>\text{1}</math>, which gives that the largest value of
+
-
<math>\cos 3x-2</math>
+
-
is
+
-
<math>-\text{1 }</math>.
+
The solutions are therefore
The solutions are therefore
-
+
{{Displayed math||<math>x=n\pi\qquad\text{(n is an arbitrary integer).}</math>}}
-
<math>x=n\pi </math>
+
-
(
+
-
<math>n</math>
+
-
an arbitrary integer).
+

Version vom 14:16, 13. Okt. 2008

If we move everything over to the left-hand side,

Vorlage:Displayed math

we see that both terms have \displaystyle \sin x as a common factor which we can take out,

Vorlage:Displayed math

In this factorized version of the equation, we see the equation has a solution only when one of the factors \displaystyle \sin x or \displaystyle \cos 3x-2 is zero. The factor \displaystyle \sin x is zero for all values of x that are given by

Vorlage:Displayed math

(see exercise 3.5:2c). The other factor \displaystyle \cos 3x-2 can never be zero because the value of a cosine always lies between \displaystyle -1 and \displaystyle 1, which gives that the largest value of \displaystyle \cos 3x-2 is \displaystyle -1.

The solutions are therefore

Vorlage:Displayed math