Lösung 4.3:9
Aus Online Mathematik Brückenkurs 1
K |
|||
Zeile 1: | Zeile 1: | ||
- | Using the formula for double angles on | + | Using the formula for double angles on <math>\sin 160^{\circ}</math> gives |
- | <math>160^{\circ }</math> | + | |
- | gives | + | |
+ | {{Displayed math||<math>\sin 160^{\circ} = 2\cos 80^{\circ}\sin 80^{\circ}\,\textrm{.}</math>}} | ||
- | <math> | + | On the right-hand side, we see that the factor <math>\cos 80^{\circ}</math> has appeared, and if we use the formula for double angles on the second factor (<math>\sin 80^{\circ}</math>), |
+ | {{Displayed math||<math>2\cos 80^{\circ}\sin 80^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\sin 40^{\circ}\,,</math>}} | ||
- | + | we obtain a further factor <math>\cos 40^{\circ}</math>. A final application of the formula for double angles on <math>\sin 40^{\circ }</math> gives us all three cosine factors, | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | we obtain a further factor | + | |
- | <math>\cos 40^{\circ }</math>. A final application of the formula for double angles on | + | |
- | <math>\sin 40^{\circ }</math> | + | |
- | gives us all three cosine factors | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot\sin 40^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot 2\cos 20^{\circ}\sin 20^{\circ}\,\textrm{·}</math>}} | ||
We have thus succeeded in showing that | We have thus succeeded in showing that | ||
- | + | {{Displayed math||<math>\sin 160^{\circ} = 8\cos 80^{\circ}\cdot \cos 40^{\circ}\cdot \cos 20^{\circ}\cdot\sin 20^{\circ}</math>}} | |
- | <math>\sin 160^{\circ }=8\cos 80^{\circ }\ | + | |
- | + | ||
which can also be written as | which can also be written as | ||
+ | {{Displayed math||<math>\cos 80^{\circ}\cdot\cos 40^{\circ}\cdot \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}}\,\textrm{.}</math>}} | ||
- | <math> | + | [[Image:4_3_9.gif||right]] |
+ | If we draw the unit circle, we see that <math>160^{\circ}</math> makes an angle of | ||
+ | <math>20^{\circ}</math> with the negative ''x''-axis, and therefore the angles | ||
+ | <math>20^{\circ}</math> and <math>160^{\circ}</math> have the same ''y''-coordinate in the unit circle, i.e. | ||
- | + | <center><math>\sin 20^{\circ} = \sin 160^{\circ}\,\textrm{.}</math></center> | |
- | + | ||
- | < | + | |
- | + | ||
- | <math>20^{\circ } | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
This shows that | This shows that | ||
- | + | <center><math>\cos 80^{\circ} \cos 40^{\circ} \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}} = \frac{1}{8}\,\textrm{.}</math></center> | |
- | <math>\cos 80^{\circ } | + |
Version vom 11:31, 10. Okt. 2008
Using the formula for double angles on \displaystyle \sin 160^{\circ} gives
On the right-hand side, we see that the factor \displaystyle \cos 80^{\circ} has appeared, and if we use the formula for double angles on the second factor (\displaystyle \sin 80^{\circ}),
we obtain a further factor \displaystyle \cos 40^{\circ}. A final application of the formula for double angles on \displaystyle \sin 40^{\circ } gives us all three cosine factors,
We have thus succeeded in showing that
which can also be written as
If we draw the unit circle, we see that \displaystyle 160^{\circ} makes an angle of \displaystyle 20^{\circ} with the negative x-axis, and therefore the angles \displaystyle 20^{\circ} and \displaystyle 160^{\circ} have the same y-coordinate in the unit circle, i.e.
This shows that