Lösung 4.3:8b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | + | Because <math>\tan v = \frac{\sin v}{\cos v}</math>, the left-hand side can be written using <math>\cos v</math> as the common denominator, | |
- | + | {{Displayed math||<math>\frac{1}{\cos v} - \tan v = \frac{1}{\cos v} - \frac{\sin v}{\cos v} = \frac{1-\sin v}{\cos v}\,\textrm{.}</math>}} | |
- | <math>\tan v=\frac{\sin v}{\cos v} | + | |
- | + | ||
- | + | ||
+ | Now, we observe that if we multiply top and bottom with <math>1+\sin v</math>, the denominator will contain the denominator of the right-hand side as a factor and, in addition, the numerator can be simplified to give <math>1-\sin^2\!v = \cos ^2\!v\,</math>, using the difference of two squares, | ||
- | <math>\frac{1}{\cos v} | + | {{Displayed math||<math>\begin{align} |
+ | \frac{1-\sin v}{\cos v} | ||
+ | &= \frac{1-\sin v}{\cos v}\cdot\frac{1+\sin v}{1+\sin v}\\[5pt] | ||
+ | &= \frac{1-\sin^2\!v}{\cos v\,(1+\sin v)}\\[5pt] | ||
+ | &= \frac{\cos^2\!v}{\cos v\,(1+\sin v)}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | Eliminating <math>\cos v</math> then gives the answer, | ||
- | + | {{Displayed math||<math>\frac{\cos^2\!v}{\cos v\,(1+\sin v)} = \frac{\cos v}{1+\sin v}\,\textrm{.}</math>}} | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math> | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Version vom 08:27, 10. Okt. 2008
Because \displaystyle \tan v = \frac{\sin v}{\cos v}, the left-hand side can be written using \displaystyle \cos v as the common denominator,
Now, we observe that if we multiply top and bottom with \displaystyle 1+\sin v, the denominator will contain the denominator of the right-hand side as a factor and, in addition, the numerator can be simplified to give \displaystyle 1-\sin^2\!v = \cos ^2\!v\,, using the difference of two squares,
Eliminating \displaystyle \cos v then gives the answer,