Lösung 4.3:2b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If we write the angle
+
If we write the angle <math>\frac{7\pi }{5}</math> as
-
<math>\frac{7\pi }{5}</math>
+
-
as
+
 +
{{Displayed math||<math>\frac{7\pi}{5} = \frac{5\pi+2\pi}{5} = \pi + \frac{2\pi }{5}</math>}}
-
<math>\frac{7\pi }{5}=\frac{5\pi +2\pi }{5}=\pi +\frac{2\pi }{5}</math>
+
we see that <math>7\pi/5</math> is an angle in the third quadrant.
 +
[[Image:4_3_2_b.gif||center]]
-
we see that
+
The angle between <math>0</math> and <math>\pi</math> which has the same ''x''-coordinate as the angle <math>7\pi/5</math>, and hence the same cosine value, is the reflection of the angle <math>7\pi/5</math> in the ''x''-axis, i.e.
-
<math>\frac{7\pi }{5}</math>
+
-
is an angle in the third quadrant.
+
-
<center> [[Image:4_3_2_b.gif]] </center>
+
{{Displayed math||<math>v = \pi -\frac{2\pi}{5} = \frac{3\pi}{5}\,\textrm{.}</math>}}
-
 
+
-
 
+
-
the line
+
-
<math>x=\cos \frac{7\pi }{5}</math>
+
-
+
-
The angle between
+
-
<math>0</math>
+
-
and
+
-
<math>\pi </math>
+
-
which has the same x-coordinate as the angle
+
-
<math>{7\pi }/{5}\;</math>, and hence the same cosine value, is the reflection of the angle
+
-
<math>{7\pi }/{5}\;</math>
+
-
in the
+
-
<math>x</math>
+
-
-axis, i.e.
+
-
<math>v=\pi -\frac{2\pi }{5}=\frac{3\pi }{5}</math>.
+

Version vom 13:14, 9. Okt. 2008

If we write the angle \displaystyle \frac{7\pi }{5} as

Vorlage:Displayed math

we see that \displaystyle 7\pi/5 is an angle in the third quadrant.

The angle between \displaystyle 0 and \displaystyle \pi which has the same x-coordinate as the angle \displaystyle 7\pi/5, and hence the same cosine value, is the reflection of the angle \displaystyle 7\pi/5 in the x-axis, i.e.

Vorlage:Displayed math