Lösung 4.2:5d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | By subtracting | + | By subtracting 360° from 495°, we do not change the value of the tangent, |
- | + | ||
- | from | + | |
- | + | ||
+ | {{Displayed math||<math>\tan 495^{\circ} = \tan (495^{\circ} - 360^{\circ}) = \tan 135^{\circ}\,\textrm{.}</math>}} | ||
- | <math>\ | + | We know from exercise a that <math>\cos 135^{\circ} = -1/\!\sqrt{2}</math> and <math>\sin 135^{\circ} = 1/\!\sqrt{2}\,</math>, which gives |
- | + | {{Displayed math||<math>\tan 135^{\circ} = \frac{\sin 135^{\circ}}{\cos 135^{\circ}} = \frac{\dfrac{1}{\sqrt{2}}}{-\dfrac{1}{\sqrt{2}}} = -1\,\textrm{.}</math>}} | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>\tan 135^{\circ }=\frac{\sin 135^{\circ }}{\cos 135^{\circ }}=\frac{\ | + |
Version vom 11:15, 9. Okt. 2008
By subtracting 360° from 495°, we do not change the value of the tangent,
We know from exercise a that \displaystyle \cos 135^{\circ} = -1/\!\sqrt{2} and \displaystyle \sin 135^{\circ} = 1/\!\sqrt{2}\,, which gives