Lösung 4.2:4d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If we use the unit circle and mark on the angle
+
If we use the unit circle and mark on the angle <math>\pi</math>, we see immediately that <math>\cos \pi = -1</math> and <math>\sin \pi = 0\,</math>.
-
<math>\pi </math>, we see immediately that
+
-
<math>\text{cos }\pi \text{ }=-\text{1 }</math>
+
-
and
+
-
<math>\text{sin }\pi \text{ }=0</math>.
+
[[Image:4_2_4_d.gif|center]]
[[Image:4_2_4_d.gif|center]]
Zeile 9: Zeile 5:
Thus,
Thus,
-
 
+
{{Displayed math||<math>\tan \pi =\frac{\sin \pi }{\cos \pi }=\frac{0}{-1}=0\,\textrm{.}</math>}}
-
<math>\tan \pi =\frac{\sin \pi }{\cos \pi }=\frac{0}{-1}=0</math>
+

Version vom 10:37, 9. Okt. 2008

If we use the unit circle and mark on the angle \displaystyle \pi, we see immediately that \displaystyle \cos \pi = -1 and \displaystyle \sin \pi = 0\,.

Thus,

Vorlage:Displayed math