Lösung 4.2:4c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | In exercise | + | In exercise 4.2:3e, we studied the angle <math>3\pi/4</math> and found that |
- | <math> | + | |
- | and found that | + | |
- | <math>\cos \frac{3\pi }{4}=-\frac{1}{\sqrt{2}} | + | {{Displayed math||<math>\cos\frac{3\pi }{4} = -\frac{1}{\sqrt{2}}\qquad\text{and}\qquad\sin\frac{3\pi}{4} = \frac{1}{\sqrt{2}}\,\textrm{.}</math>}} |
- | and | + | |
- | + | ||
+ | Because <math>\tan x</math> is defined as <math>\frac{\sin x}{\cos x}</math>, we get immediately that | ||
- | + | {{Displayed math||<math>\tan\frac{3\pi}{4} = \frac{\sin\dfrac{3\pi}{4}}{\cos \dfrac{3\pi}{4}} = \frac{\dfrac{1}{\sqrt{2}}}{-\dfrac{1}{\sqrt{2}}} = -1\,\textrm{.}</math>}} | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>\tan \frac{3\pi }{4}=\frac{\sin \ | + |
Version vom 08:41, 9. Okt. 2008
In exercise 4.2:3e, we studied the angle \displaystyle 3\pi/4 and found that
Because \displaystyle \tan x is defined as \displaystyle \frac{\sin x}{\cos x}, we get immediately that