Lösung 4.2:3d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
In order to get an angle between
+
In order to get an angle between <math>0</math> and <math>\text{2}\pi</math>, we subtract <math>2\pi</math> from <math>{7\pi }/{2}\,</math>, which also leaves the cosine value unchanged
-
<math>0</math>
+
-
and
+
-
<math>\text{2}\pi </math>, we subtract
+
-
<math>\text{2}\pi </math>
+
-
from
+
-
<math>{7\pi }/{2}\;</math>
+
-
, which also leaves the cosine value unchanged
+
-
 
+
-
 
+
-
<math>\cos \frac{7\pi }{2}=\cos \left( \frac{7\pi }{2}-2\pi \right)=\cos \frac{3\pi }{2}</math>
+
-
 
+
-
 
+
-
When we draw a line which makes an angle
+
-
<math>{3\pi }/{2}\;</math>
+
-
with the positive
+
-
<math>x</math>
+
-
-axis, we get the negative
+
-
<math>y</math>
+
-
-axis and we see that this line cuts the unit circle at the point
+
-
<math>\left( 0 \right.,\left. -1 \right)</math>. The
+
-
<math>x</math>
+
-
-coordinate of the intersection point is thus
+
-
<math>0</math>
+
-
and hence
+
-
<math>\cos {7\pi }/{2}\;=\cos {3\pi }/{2}\;=0</math>
+
 +
{{Displayed math||<math>\cos\frac{7\pi}{2} = \cos\Bigl(\frac{7\pi}{2}-2\pi\Bigr) = \cos\frac{3\pi}{2}\,\textrm{.}</math>}}
 +
When we draw a line which makes an angle <math>3\pi/2</math> with the positive ''x''-axis, we get the negative ''y''-axis and we see that this line cuts the unit circle at the point (0,-1). The ''x''-coordinate of the intersection point is thus
 +
<math>0</math> and hence <math>\cos (7\pi/2) = \cos (3\pi/2) = 0\,</math>.
[[Image:4_2_3_d.gif|center]]
[[Image:4_2_3_d.gif|center]]

Version vom 07:57, 9. Okt. 2008

In order to get an angle between \displaystyle 0 and \displaystyle \text{2}\pi, we subtract \displaystyle 2\pi from \displaystyle {7\pi }/{2}\,, which also leaves the cosine value unchanged

Vorlage:Displayed math

When we draw a line which makes an angle \displaystyle 3\pi/2 with the positive x-axis, we get the negative y-axis and we see that this line cuts the unit circle at the point (0,-1). The x-coordinate of the intersection point is thus \displaystyle 0 and hence \displaystyle \cos (7\pi/2) = \cos (3\pi/2) = 0\,.