Lösung 4.1:7c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
By completing the square, we can rewrite the
+
By completing the square, we can rewrite the ''x''- and ''y''-terms as quadratic expressions,
-
<math>x</math>
+
-
- and
+
-
<math>y</math>
+
-
-terms as quadratic expressions,
+
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>x^{2}-2x=\left( x-1 \right)^{2}-1^{2}</math>
+
x^2 - 2x &= (x-1)^2 - 1^2\,,\\[5pt]
-
 
+
y^2 + 6y &= (y+3)^2 - 3^2\,,
-
 
+
\end{align}</math>}}
-
<math>y^{2}+6y=\left( y+3 \right)^{2}-3^{2}</math>
+
and the whole equation then has standard form,
and the whole equation then has standard form,
 +
{{Displayed math||<math>\begin{align}
 +
(x-1)^2 - 1 + (y+3)^2 - 9 &= -3\,,\\[5pt]
 +
(x-1)^2 + (y+3)^2 &= 7\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
From this, we see that the circle has its centre at (1,-3) and radius <math>\sqrt{7}\,</math>.
-
& \left( x-1 \right)^{2}-1+\left( y+3 \right)^{2}-9=-3 \\
+
-
& \Leftrightarrow \quad \left( x-1 \right)^{2}+\left( y+3 \right)^{2}=7 \\
+
-
\end{align}</math>
+
- 
-
From this, we see that the circle has its centre at
 
-
<math>\left( 1 \right.,\left. -3 \right)</math>
 
-
and radius
 
-
<math>\sqrt{7}</math>.
 
- 
- 
-
{{NAVCONTENT_START}}
 
<center> [[Image:4_1_7_c.gif]] </center>
<center> [[Image:4_1_7_c.gif]] </center>
- 
-
{{NAVCONTENT_STOP}}
 

Version vom 11:31, 8. Okt. 2008

By completing the square, we can rewrite the x- and y-terms as quadratic expressions,

Vorlage:Displayed math

and the whole equation then has standard form,

Vorlage:Displayed math

From this, we see that the circle has its centre at (1,-3) and radius \displaystyle \sqrt{7}\,.


Image:4_1_7_c.gif