Lösung 3.3:6c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | Before we even start thinking about transforming | + | Before we even start thinking about transforming <math>\log_2</math> and <math>\log_3</math> to ln, we use the log laws |
- | <math>\ | + | |
- | and | + | |
- | <math>\ | + | |
- | to ln, we use the log laws | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \log a^b &= b\cdot\log a\,,\\[5pt] | ||
+ | \log (a\cdot b) &= \log a+\log b\,, | ||
+ | \end{align}</math>}} | ||
to simplify the expression | to simplify the expression | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \log_{3}\log _{2}3^{118} | ||
+ | &= \log_{3}(118\cdot\log_{2}3)\\[5pt] | ||
+ | &= \log_{3}118 + \log_{3}\log_{2}3\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | <math> | + | With help of the relation <math>2^{\log_{2}x} = x</math> and <math>3^{\log_{3}x} = x</math> and taking the natural logarithm , we can express <math>\log_{2}</math> and <math>\log_{3}</math> using ln, |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\log_{2}x=\frac{\ln x}{\ln 2}\quad</math> and <math>\quad\log_{3}x = \frac{\ln x}{\ln 3}\,\textrm{.}</math>}} | ||
- | + | The two terms <math>\log_3 118</math> and <math>\log_3\log_2 3</math> can therefore be written as | |
+ | {{Displayed math||<math>\log_{3}118 = \frac{\ln 118}{\ln 3}\quad</math> and <math>\quad\log_{3}\log_{2}3 = \log_{3}\frac{\ln 3}{\ln 2}\,,</math>}} | ||
- | + | where we can simplify the last expression further with the logarithm law, log (a/b) = log a – log b, and then transform <math>\log _{3}</math> to ln, | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | where we can simplify the last expression further with the logarithm law, log a/b = log a – log b, and then transform | + | |
- | <math>\log _{3}</math> | + | |
- | to ln, | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \log_{3}\frac{\ln 3}{\ln 2} | ||
+ | &= \log_{3}\ln 3 - \log_{3}\ln 2\\[5pt] | ||
+ | &= \frac{\ln\ln 3}{\ln 3} - \frac{\ln\ln 2}{\ln 3}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
In all, we thus obtain | In all, we thus obtain | ||
- | + | {{Displayed math||<math>\log_{3}\log_{2}3^{118} = \frac{\ln 118}{\ln 3} + \frac{\ln \ln 3}{\ln 3} - \frac{\ln\ln 2}{\ln 3}\,\textrm{.}</math>}} | |
- | <math>\ | + | |
- | + | ||
Input into the calculator gives | Input into the calculator gives | ||
+ | {{Displayed math||<math>\log_{3}\log_{2}3^{118}\approx 4\textrm{.}762\,\textrm{.}</math>}} | ||
- | <math>\log _{3}\log _{2}3^{118}\approx 4.762</math> | ||
- | |||
- | |||
- | |||
- | NOTE: the button sequence on a calculator will be: | ||
+ | Note: The button sequence on the calculator will be: | ||
- | < | + | <center> |
- | & | + | {| |
- | & | + | || |
- | & | + | {| border="1" cellpadding="3" cellspacing="0" |
- | & | + | |width="30px" align="center"|1 |
- | + | |} | |
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|1 | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|8 | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|LN | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|÷ | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|3 | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|LN | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|+ | ||
+ | |} | ||
+ | |- | ||
+ | |height="7px"| | ||
+ | |- | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|3 | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|LN | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|LN | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|÷ | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|3 | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|LN | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|- | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|2 | ||
+ | |} | ||
+ | |- | ||
+ | |height="7px"| | ||
+ | |- | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|LN | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|LN | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|÷ | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|3 | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|LN | ||
+ | |} | ||
+ | || | ||
+ | || | ||
+ | {| border="1" cellpadding="3" cellspacing="0" | ||
+ | |width="30px" align="center"|= | ||
+ | |} | ||
+ | |} | ||
+ | </center> |
Version vom 08:40, 2. Okt. 2008
Before we even start thinking about transforming \displaystyle \log_2 and \displaystyle \log_3 to ln, we use the log laws
to simplify the expression
With help of the relation \displaystyle 2^{\log_{2}x} = x and \displaystyle 3^{\log_{3}x} = x and taking the natural logarithm , we can express \displaystyle \log_{2} and \displaystyle \log_{3} using ln,
The two terms \displaystyle \log_3 118 and \displaystyle \log_3\log_2 3 can therefore be written as
where we can simplify the last expression further with the logarithm law, log (a/b) = log a – log b, and then transform \displaystyle \log _{3} to ln,
In all, we thus obtain
Input into the calculator gives
Note: The button sequence on the calculator will be:
|
|
|
|
|
|
|
| |||||||||||||||
|
|
|
|
|
|
|
| |||||||||||||||
|
|
|
|
|
|