Lösung 3.3:5b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
By using the logarithm laws, | By using the logarithm laws, | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\ | + | \ln a + \ln b &= \ln (a\cdot b)\,,\\[5pt] |
- | + | \ln a - \ln b &= \ln\frac{a}{b}\,, | |
- | + | \end{align}</math>}} | |
- | + | ||
we can collect together the terms into one logarithmic expression | we can collect together the terms into one logarithmic expression | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \ln 8 - \ln 4 - \ln 2 &= \ln 8 - (\ln 4 + \ln 2)\\[5pt] | ||
+ | &= \ln 8 - \ln(4\cdot 2)\\[5pt] | ||
+ | &= \ln\frac{8}{4\cdot 2}\\[5pt] | ||
+ | &= \ln 1\\[5pt] | ||
+ | &= 0\,, | ||
+ | \end{align}</math>}} | ||
- | <math> | + | where <math>\ln 1 = 0</math>, since <math>e^{0}=1</math> (the equality <math>a^{0}=1</math> holds for all <math>a\ne 0</math>). |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>e^{0}=1</math> | + | |
- | (the equality | + | |
- | <math>a^{0}=1</math> | + | |
- | holds for all | + | |
- | <math>a\ne 0</math> | + | |
- | ). | + |
Version vom 07:27, 2. Okt. 2008
By using the logarithm laws,
we can collect together the terms into one logarithmic expression
where \displaystyle \ln 1 = 0, since \displaystyle e^{0}=1 (the equality \displaystyle a^{0}=1 holds for all \displaystyle a\ne 0).