Lösung 3.3:5b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
By using the logarithm laws,
By using the logarithm laws,
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\lg a+\lg b=\lg \left( a\centerdot b \right)</math>
+
\ln a + \ln b &= \ln (a\cdot b)\,,\\[5pt]
-
 
+
\ln a - \ln b &= \ln\frac{a}{b}\,,
-
 
+
\end{align}</math>}}
-
<math>\text{log }a-\text{ log }b=\text{log}\left( \frac{a}{b} \right)</math>
+
we can collect together the terms into one logarithmic expression
we can collect together the terms into one logarithmic expression
 +
{{Displayed math||<math>\begin{align}
 +
\ln 8 - \ln 4 - \ln 2 &= \ln 8 - (\ln 4 + \ln 2)\\[5pt]
 +
&= \ln 8 - \ln(4\cdot 2)\\[5pt]
 +
&= \ln\frac{8}{4\cdot 2}\\[5pt]
 +
&= \ln 1\\[5pt]
 +
&= 0\,,
 +
\end{align}</math>}}
-
<math>\begin{align}
+
where <math>\ln 1 = 0</math>, since <math>e^{0}=1</math> (the equality <math>a^{0}=1</math> holds for all <math>a\ne 0</math>).
-
& \ln 8-\ln 4-\ln 2=\ln 8-\left( \ln 4+\ln 2 \right)=\ln 8-\ln \left( 4\centerdot 2 \right) \\
+
-
& =\ln \frac{8}{4\centerdot 2}=\ln 1=0, \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
where ln 1 =0, since
+
-
<math>e^{0}=1</math>
+
-
(the equality
+
-
<math>a^{0}=1</math>
+
-
holds for all
+
-
<math>a\ne 0</math>
+
-
).
+

Version vom 07:27, 2. Okt. 2008

By using the logarithm laws,

Vorlage:Displayed math

we can collect together the terms into one logarithmic expression

Vorlage:Displayed math

where \displaystyle \ln 1 = 0, since \displaystyle e^{0}=1 (the equality \displaystyle a^{0}=1 holds for all \displaystyle a\ne 0).