Lösung 3.3:4c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | All three arguments of the logarithm can be written as powers of | + | All three arguments of the logarithm can be written as powers of 3, |
- | + | ||
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | + | 27^{\frac{1}{3}} &= \bigl(3^3\bigr)^{\frac{1}{3}} = 3^{3\cdot\frac{1}{3}} = 3^1 = 3\,,\\[5pt] | |
- | + | \frac{1}{9} &= \frac{1}{3^2} = 3^{-2}\,,\\ | |
- | \end{align}</math> | + | \end{align}</math>}} |
+ | and it is therefore appropriate to use base 3 when simplifying using the logarithms, even if we have the base 10-logarithm, lg, | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | + | \lg 27^{\frac{1}{3}} + \frac{\lg 3}{2} + \lg \frac{1}{9} | |
- | + | &= \lg 3 + \frac{1}{2}\lg 3 + \lg 3^{-2}\\[5pt] | |
- | + | &= \lg 3 + \frac{1}{2}\lg 3 + (-2)\cdot\lg 3\\[5pt] | |
- | + | &= \Bigl(1+\frac{1}{2}-2\Bigr)\lg 3\\[5pt] | |
- | + | &= -\frac{1}{2}\lg 3\,\textrm{.} | |
- | + | \end{align}</math>}} | |
- | + | ||
- | <math>\begin{align} | + | |
- | + | ||
- | & =\lg 3+\frac{1}{2}\lg 3+ | + | |
- | & =\ | + | |
- | \end{align}</math> | + | |
- | + | ||
This expression cannot be simplified any further. | This expression cannot be simplified any further. |
Version vom 07:16, 2. Okt. 2008
All three arguments of the logarithm can be written as powers of 3,
and it is therefore appropriate to use base 3 when simplifying using the logarithms, even if we have the base 10-logarithm, lg,
This expression cannot be simplified any further.