Lösung 3.3:3h

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Because
+
Because <math>a^{2}\sqrt{a} = a^{2}a^{1/2} = a^{2+1/2} = a^{5/2}</math>, the logarithm law, <math>b\lg a = \lg a^b</math>, gives that
-
<math>a^{2}\sqrt{a}=a^{2}a^{\frac{1}{2}}=a^{2+\frac{1}{2}}=a^{\frac{5}{2}}</math>, the logarithm law,
+
-
<math>b\lg a=\lg a^{b}</math>, gives that
+
 +
{{Displayed math||<math>\log_{a} \bigl(a^{2}\sqrt{a}\,\bigr) = \log_{a}a^{5/2} = \frac{5}{2}\cdot\log_{a}a = \frac{5}{2}\cdot 1 = \frac{5}{2}\,,</math>}}
-
<math>\log _{a}a^{2}\sqrt{a}=\log _{a}a^{\frac{5}{2}}=\frac{5}{2}\centerdot \log _{a}a=\frac{5}{2}\centerdot 1=\frac{5}{2},</math>
+
where we have used that <math>\log_{a}a = 1\,</math>.
-
where we have used that
+
Note: In this exercise, we assume, implicitly, that <math>a > 0</math> and <math>a\ne 1\,</math>.
-
<math>\log _{a}a=1</math>.
+
-
 
+
-
NOTE: In this exercise, we assume, implicitly, that
+
-
<math>\text{a}>0\text{ }</math>
+
-
and
+
-
<math>\text{a}\ne \text{1}</math>.
+

Version vom 07:04, 2. Okt. 2008

Because \displaystyle a^{2}\sqrt{a} = a^{2}a^{1/2} = a^{2+1/2} = a^{5/2}, the logarithm law, \displaystyle b\lg a = \lg a^b, gives that

Vorlage:Displayed math

where we have used that \displaystyle \log_{a}a = 1\,.


Note: In this exercise, we assume, implicitly, that \displaystyle a > 0 and \displaystyle a\ne 1\,.