Lösung 3.3:3a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | By writing the argument | + | By writing the argument <math>8</math> as <math>8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^3</math>, the logarithm law, <math>\lg a^b = b\lg a</math>, gives |
- | <math> | + | |
- | as | + | |
- | <math>8=2\ | + | |
- | <math>\lg a^ | + | |
- | + | {{Displayed math||<math>\log _{2}8 = \log _{2} 2^3 = 3\cdot\log _{2}2 = 3\cdot 1 = 3\,,</math>}} | |
- | <math>\log _{2}8=\log _{2}2^ | + | |
- | + | where we have used <math>\log _{2}2 = 1\,</math>. | |
- | where we have used | + | |
- | <math>\log _{2}2=1</math>. | + |
Version vom 06:24, 2. Okt. 2008
By writing the argument \displaystyle 8 as \displaystyle 8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^3, the logarithm law, \displaystyle \lg a^b = b\lg a, gives
where we have used \displaystyle \log _{2}2 = 1\,.