Lösung 3.3:3a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
By writing the argument
+
By writing the argument <math>8</math> as <math>8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^3</math>, the logarithm law, <math>\lg a^b = b\lg a</math>, gives
-
<math>\text{8}</math>
+
-
as
+
-
<math>8=2\centerdot 4=2\centerdot 2\centerdot 2=2^{3}</math>, the logarithm law,
+
-
<math>\lg a^{b}=b\lg a</math>, gives
+
-
+
{{Displayed math||<math>\log _{2}8 = \log _{2} 2^3 = 3\cdot\log _{2}2 = 3\cdot 1 = 3\,,</math>}}
-
<math>\log _{2}8=\log _{2}2^{3}=3\centerdot \log _{2}2=3\centerdot 1=3</math>
+
-
 
+
where we have used <math>\log _{2}2 = 1\,</math>.
-
where we have used
+
-
<math>\log _{2}2=1</math>.
+

Version vom 06:24, 2. Okt. 2008

By writing the argument \displaystyle 8 as \displaystyle 8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^3, the logarithm law, \displaystyle \lg a^b = b\lg a, gives

Vorlage:Displayed math

where we have used \displaystyle \log _{2}2 = 1\,.