Lösung 3.3:2g
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | We know that | + | We know that <math>10^{\lg x} = x</math>, so therefore we rewrite the exponent as |
- | <math>10^{\lg x}=x</math>, so therefore we rewrite the exponent as | + | <math>-\lg 0\textrm{.}1 = (-1)\cdot\lg 0\textrm{.}1 = \lg 0\textrm{.}1^{-1}</math> |
- | <math>-\lg 0.1= | + | by using the log law <math>b\lg a = \lg a^b</math>. This gives |
- | by using the log law | + | |
- | <math>b\lg a=\lg a^ | + | |
- | + | {{Displayed math||<math>10^{-\lg 0\textrm{.}1}=10^{\lg 0\textrm{.}1^{-1}}=0\textrm{.}1^{-1}=\frac{1}{0\textrm{.}1}=10\,\textrm{.}</math>}} | |
- | <math>10^{-\lg 0.1}=10^{\lg 0.1^{-1}}=0.1^{-1}=\frac{1}{0.1}=10</math> | + |
Version vom 06:20, 2. Okt. 2008
We know that \displaystyle 10^{\lg x} = x, so therefore we rewrite the exponent as \displaystyle -\lg 0\textrm{.}1 = (-1)\cdot\lg 0\textrm{.}1 = \lg 0\textrm{.}1^{-1} by using the log law \displaystyle b\lg a = \lg a^b. This gives