Lösung 4.4:7a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.4:7a moved to Solution 4.4:7a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we examine the equation, we see that
-
<center> [[Image:4_4_7a-1(2).gif]] </center>
+
<math>x</math>
-
{{NAVCONTENT_STOP}}
+
only occurs as
-
{{NAVCONTENT_START}}
+
<math>\text{sin }x\text{ }</math>
-
<center> [[Image:4_4_7a-2(2).gif]] </center>
+
and it can therefore be appropriate to take an intermediary step and solve for
-
{{NAVCONTENT_STOP}}
+
<math>\text{sin }x</math>, instead of trying to solve for
 +
<math>x</math>
 +
directly.
 +
 
 +
If we write
 +
<math>t=\sin x</math>
 +
and treat
 +
<math>t</math>
 +
as a new unknown variable, the equation becomes
 +
 
 +
 
 +
<math>2t^{2}+t=1</math>
 +
 
 +
 
 +
when it is expressed completely in terms of
 +
<math>t</math>. This is a normal second-degree equation; after dividing by
 +
<math>\text{2}</math>, we complete the square on the left-hand side,
 +
 
 +
 
 +
<math>\begin{align}
 +
& 2t^{2}+t-\frac{1}{2}=\left( t+\frac{1}{4} \right)^{2}-\left( \frac{1}{4} \right)^{2}-\frac{1}{2} \\
 +
& =\left( t+\frac{1}{4} \right)^{2}-\frac{9}{16} \\
 +
\end{align}</math>
 +
 
 +
 
 +
and then obtain the equation
 +
 
 +
 
 +
<math>\left( t+\frac{1}{4} \right)^{2}=\frac{9}{16}</math>
 +
 
 +
 
 +
which has the solutions
 +
<math>t=-\frac{1}{4}\pm \sqrt{\frac{9}{16}}=-\frac{1}{4}\pm \frac{3}{4}</math>,
 +
i.e.
 +
<math>t=-\frac{1}{4}+\frac{3}{4}=\frac{1}{2}</math>
 +
and
 +
<math>t=-\frac{1}{4}-\frac{3}{4}=-1</math>
 +
 
 +
 
 +
Because
 +
<math>t=\sin x</math>, this means that the values of
 +
<math>x</math>
 +
that satisfy the equation in the exercise will necessarily satisfy one of the basic equations,
 +
<math>\text{sin }x=\frac{1}{2}</math>
 +
or
 +
<math>\text{sin }x=-\text{1}.</math>
 +
 
 +
 
 +
 
 +
<math>\text{sin }x=\frac{1}{2}</math>: this equation has the solutions
 +
<math>x={\pi }/{6}\;</math>
 +
and
 +
<math>x=\pi -{\pi }/{6}\;=5{\pi }/{6}\;</math>
 +
in the unit circle and the general solution is
 +
 
 +
 
 +
<math>x=\frac{\pi }{6}+2n\pi </math>
 +
and
 +
<math>x=\frac{5\pi }{6}+2n\pi </math>
 +
 
 +
 
 +
where
 +
<math>n\text{ }</math>
 +
is an arbitrary integer.
 +
 
 +
 
 +
<math>\text{sin }x=-\text{1}</math>: the equation has only one solution
 +
<math>x={3\pi }/{2}\;</math>
 +
in the unit circle, and the general solution is therefore
 +
 
 +
 
 +
<math>x=\frac{3\pi }{2}+2n\pi </math>
 +
 
 +
 
 +
where
 +
<math>n\text{ }</math>
 +
is an arbitrary integer.
 +
 
 +
All of the solution to the equation are given by
 +
 
 +
 
 +
<math>\left\{ \begin{array}{*{35}l}
 +
x={\pi }/{6}\;+2n\pi \\
 +
x={5\pi }/{6}\;+2n\pi \\
 +
x={3\pi }/{2}\;+2n\pi \\
 +
\end{array} \right.</math>
 +
(
 +
<math>n\text{ }</math>
 +
an arbitrary integer)

Version vom 12:49, 1. Okt. 2008

If we examine the equation, we see that \displaystyle x only occurs as \displaystyle \text{sin }x\text{ } and it can therefore be appropriate to take an intermediary step and solve for \displaystyle \text{sin }x, instead of trying to solve for \displaystyle x directly.

If we write \displaystyle t=\sin x and treat \displaystyle t as a new unknown variable, the equation becomes


\displaystyle 2t^{2}+t=1


when it is expressed completely in terms of \displaystyle t. This is a normal second-degree equation; after dividing by \displaystyle \text{2}, we complete the square on the left-hand side,


\displaystyle \begin{align} & 2t^{2}+t-\frac{1}{2}=\left( t+\frac{1}{4} \right)^{2}-\left( \frac{1}{4} \right)^{2}-\frac{1}{2} \\ & =\left( t+\frac{1}{4} \right)^{2}-\frac{9}{16} \\ \end{align}


and then obtain the equation


\displaystyle \left( t+\frac{1}{4} \right)^{2}=\frac{9}{16}


which has the solutions \displaystyle t=-\frac{1}{4}\pm \sqrt{\frac{9}{16}}=-\frac{1}{4}\pm \frac{3}{4}, i.e. \displaystyle t=-\frac{1}{4}+\frac{3}{4}=\frac{1}{2} and \displaystyle t=-\frac{1}{4}-\frac{3}{4}=-1


Because \displaystyle t=\sin x, this means that the values of \displaystyle x that satisfy the equation in the exercise will necessarily satisfy one of the basic equations, \displaystyle \text{sin }x=\frac{1}{2} or \displaystyle \text{sin }x=-\text{1}.


\displaystyle \text{sin }x=\frac{1}{2}: this equation has the solutions \displaystyle x={\pi }/{6}\; and \displaystyle x=\pi -{\pi }/{6}\;=5{\pi }/{6}\; in the unit circle and the general solution is


\displaystyle x=\frac{\pi }{6}+2n\pi and \displaystyle x=\frac{5\pi }{6}+2n\pi


where \displaystyle n\text{ } is an arbitrary integer.


\displaystyle \text{sin }x=-\text{1}: the equation has only one solution \displaystyle x={3\pi }/{2}\; in the unit circle, and the general solution is therefore


\displaystyle x=\frac{3\pi }{2}+2n\pi


where \displaystyle n\text{ } is an arbitrary integer.

All of the solution to the equation are given by


\displaystyle \left\{ \begin{array}{*{35}l} x={\pi }/{6}\;+2n\pi \\ x={5\pi }/{6}\;+2n\pi \\ x={3\pi }/{2}\;+2n\pi \\ \end{array} \right. ( \displaystyle n\text{ } an arbitrary integer)