Lösung 4.4:5c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.4:5c moved to Solution 4.4:5c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
For a fixed value of
-
<center> [[Image:4_4_5c-1(2).gif]] </center>
+
<math>u</math>, an equality of the form
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:4_4_5c-2(2).gif]] </center>
+
<math>\cos u=\cos v</math>
-
{{NAVCONTENT_STOP}}
+
 
 +
 
 +
is satisfied by two angles
 +
<math>v</math>
 +
in the unit circle:
 +
 
 +
 
 +
<math>v=u</math>
 +
and
 +
<math>v=-u</math>
[[Image:4_4_5_c.gif|center]]
[[Image:4_4_5_c.gif|center]]
 +
 +
This means that all angles
 +
<math>v</math>
 +
which satisfy the equality are
 +
 +
 +
<math>v=u+2n\pi </math>
 +
and
 +
<math>v=-u+2n\pi </math>
 +
 +
 +
where
 +
<math>n\text{ }</math>
 +
is an arbitrary integer.
 +
 +
Therefore, the equation
 +
 +
 +
<math>\cos 5x=\cos \left( x+{\pi }/{5}\; \right)</math>
 +
 +
 +
has the solutions
 +
 +
 +
<math>5x=x+\frac{\pi }{5}+2n\pi </math>
 +
or
 +
 +
<math>5x=-x-\frac{\pi }{5}+2n\pi </math>
 +
 +
If we collect
 +
<math>x\text{ }</math>
 +
onto one side, we end up with
 +
 +
 +
<math>\left\{ \begin{array}{*{35}l}
 +
x=\frac{\pi }{20}+\frac{1}{2}n\pi \\
 +
x=-\frac{\pi }{30}+\frac{1}{3}n\pi \\
 +
\end{array} \right.</math>
 +
(
 +
<math>n\text{ }</math>
 +
an arbitrary integer).

Version vom 11:18, 1. Okt. 2008

For a fixed value of \displaystyle u, an equality of the form


\displaystyle \cos u=\cos v


is satisfied by two angles \displaystyle v in the unit circle:


\displaystyle v=u and \displaystyle v=-u


This means that all angles \displaystyle v which satisfy the equality are


\displaystyle v=u+2n\pi and \displaystyle v=-u+2n\pi


where \displaystyle n\text{ } is an arbitrary integer.

Therefore, the equation


\displaystyle \cos 5x=\cos \left( x+{\pi }/{5}\; \right)


has the solutions


\displaystyle 5x=x+\frac{\pi }{5}+2n\pi or

\displaystyle 5x=-x-\frac{\pi }{5}+2n\pi

If we collect \displaystyle x\text{ } onto one side, we end up with


\displaystyle \left\{ \begin{array}{*{35}l} x=\frac{\pi }{20}+\frac{1}{2}n\pi \\ x=-\frac{\pi }{30}+\frac{1}{3}n\pi \\ \end{array} \right. ( \displaystyle n\text{ } an arbitrary integer).