Lösung 4.4:5b
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.4:5b moved to Solution 4.4:5b: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | + | Let's first investigate when the equality | |
| - | < | + | |
| - | + | ||
| - | + | <math>\tan u=\tan v</math> | |
| - | < | + | |
| - | + | ||
| + | is satisfied. Because | ||
| + | <math>u</math> | ||
| + | can be interpreted as the slope (gradient) of the line which makes an angle | ||
| + | <math>u</math> | ||
| + | with the positive | ||
| + | <math>x</math> | ||
| + | -axis, we see that for a fixed value of tan u, there are two angles | ||
| + | <math>v</math> | ||
| + | in the unit circle with this slope: | ||
| + | |||
| + | |||
| + | <math>v=u</math> | ||
| + | and | ||
| + | <math>v=u+\pi </math> | ||
| + | |||
[[Image:4_4_5_b.gif|center]] | [[Image:4_4_5_b.gif|center]] | ||
| + | |||
| + | slope | ||
| + | <math>=\text{ tan }u</math> | ||
| + | slope | ||
| + | <math>=\text{ tan }u</math> | ||
| + | |||
| + | |||
| + | The angle | ||
| + | <math>v</math> | ||
| + | has the same slope after every half turn, so if we add multiples of | ||
| + | <math>\pi \text{ }</math> | ||
| + | to | ||
| + | <math>u</math>, we will obtain all the angles | ||
| + | <math>v</math> | ||
| + | which satisfy the equality | ||
| + | |||
| + | |||
| + | <math>v=u+n\pi </math> | ||
| + | |||
| + | |||
| + | where | ||
| + | <math>n</math> | ||
| + | is an arbitrary integer. | ||
| + | |||
| + | If we apply this result to the equation | ||
| + | |||
| + | |||
| + | <math>\tan x=\tan 4x</math> | ||
| + | |||
| + | |||
| + | we see that the solutions are given by | ||
| + | |||
| + | |||
| + | <math>4x=x+n\pi </math> | ||
| + | ( | ||
| + | <math>n</math> | ||
| + | an arbitrary integer), | ||
| + | |||
| + | and solving for | ||
| + | <math>x</math> | ||
| + | gives | ||
| + | |||
| + | |||
| + | <math>x=\frac{1}{3}n\pi </math> | ||
| + | ( | ||
| + | <math>n</math> | ||
| + | an arbitrary integer). | ||
Version vom 11:06, 1. Okt. 2008
Let's first investigate when the equality
\displaystyle \tan u=\tan v
is satisfied. Because
\displaystyle u
can be interpreted as the slope (gradient) of the line which makes an angle
\displaystyle u
with the positive
\displaystyle x
-axis, we see that for a fixed value of tan u, there are two angles
\displaystyle v
in the unit circle with this slope:
\displaystyle v=u
and
\displaystyle v=u+\pi
slope \displaystyle =\text{ tan }u slope \displaystyle =\text{ tan }u
The angle
\displaystyle v
has the same slope after every half turn, so if we add multiples of
\displaystyle \pi \text{ }
to
\displaystyle u, we will obtain all the angles
\displaystyle v
which satisfy the equality
\displaystyle v=u+n\pi
where
\displaystyle n
is an arbitrary integer.
If we apply this result to the equation
\displaystyle \tan x=\tan 4x
we see that the solutions are given by
\displaystyle 4x=x+n\pi
(
\displaystyle n
an arbitrary integer),
and solving for \displaystyle x gives
\displaystyle x=\frac{1}{3}n\pi
(
\displaystyle n
an arbitrary integer).

