Lösung 4.4:3b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.4:3b moved to Solution 4.4:3b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We see directly that
-
<center> [[Image:4_4_3b.gif]] </center>
+
<math>x=\frac{\pi }{5}</math>
-
{{NAVCONTENT_STOP}}
+
is a solution to the equation, and using the unit circle we can also draw the conclusion that
 +
<math>x=\pi -\frac{\pi }{5}=\frac{4\pi }{5}</math>
 +
is the only other solution between
 +
<math>0</math>
 +
and
 +
<math>\text{2}\pi </math>.
 +
 
[[Image:4_4_3_b.gif|center]]
[[Image:4_4_3_b.gif|center]]
 +
 +
We obtain all solutions to the equation when we add integer multiples of
 +
<math>\text{2}\pi </math>,
 +
 +
 +
<math>x=\frac{\pi }{5}+2n\pi </math>
 +
and
 +
<math>x=\frac{4\pi }{5}+2n\pi </math>
 +
 +
 +
where
 +
<math>n</math>
 +
is an arbitrary integer.

Version vom 09:43, 1. Okt. 2008

We see directly that \displaystyle x=\frac{\pi }{5} is a solution to the equation, and using the unit circle we can also draw the conclusion that \displaystyle x=\pi -\frac{\pi }{5}=\frac{4\pi }{5} is the only other solution between \displaystyle 0 and \displaystyle \text{2}\pi .


We obtain all solutions to the equation when we add integer multiples of \displaystyle \text{2}\pi ,


\displaystyle x=\frac{\pi }{5}+2n\pi and \displaystyle x=\frac{4\pi }{5}+2n\pi


where \displaystyle n is an arbitrary integer.