Lösung 4.4:2e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.4:2e moved to Solution 4.4:2e: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
This is almost the same equation as in exercise d. First, we determine the solutions to the equation
-
<center> [[Image:4_4_2e.gif]] </center>
+
when
-
{{NAVCONTENT_STOP}}
+
<math>0\le \text{5}x\le \text{2}\pi </math>, and using the unit circle shows that there are two of these:
 +
<math>\text{5}x\text{ }=\frac{\pi }{6}</math>
 +
and
 +
<math>\text{5}x\text{ }=\pi -\frac{\pi }{6}=\frac{5\pi }{6}</math>.
 +
 
[[Image:4_4_2_e.gif|center]]
[[Image:4_4_2_e.gif|center]]
 +
 +
We obtain the remaining solutions by adding multiples of
 +
<math>2\pi </math>
 +
to the two solutions above:
 +
 +
 +
<math>\text{5}x\text{ }=\frac{\pi }{6}+2n\pi </math>
 +
and
 +
<math>\text{5}x\text{ }=\frac{5\pi }{6}+2n\pi </math>
 +
(
 +
<math>n</math>
 +
an arbitrary integer),
 +
 +
or if we divide by
 +
<math>\text{5}</math>:
 +
 +
 +
<math>x\text{ }=\frac{\pi }{30}+\frac{2}{5}n\pi </math>
 +
and
 +
<math>x\text{ }=\frac{\pi }{6}+\frac{2}{5}n\pi </math>
 +
(
 +
<math>n</math>
 +
an arbitrary integer).

Version vom 08:36, 1. Okt. 2008

This is almost the same equation as in exercise d. First, we determine the solutions to the equation when \displaystyle 0\le \text{5}x\le \text{2}\pi , and using the unit circle shows that there are two of these: \displaystyle \text{5}x\text{ }=\frac{\pi }{6} and \displaystyle \text{5}x\text{ }=\pi -\frac{\pi }{6}=\frac{5\pi }{6}.


We obtain the remaining solutions by adding multiples of \displaystyle 2\pi to the two solutions above:


\displaystyle \text{5}x\text{ }=\frac{\pi }{6}+2n\pi and \displaystyle \text{5}x\text{ }=\frac{5\pi }{6}+2n\pi ( \displaystyle n an arbitrary integer),

or if we divide by \displaystyle \text{5}:


\displaystyle x\text{ }=\frac{\pi }{30}+\frac{2}{5}n\pi and \displaystyle x\text{ }=\frac{\pi }{6}+\frac{2}{5}n\pi ( \displaystyle n an arbitrary integer).