Lösung 4.4:2e
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.4:2e moved to Solution 4.4:2e: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | This is almost the same equation as in exercise d. First, we determine the solutions to the equation |
- | < | + | when |
- | {{ | + | <math>0\le \text{5}x\le \text{2}\pi </math>, and using the unit circle shows that there are two of these: |
+ | <math>\text{5}x\text{ }=\frac{\pi }{6}</math> | ||
+ | and | ||
+ | <math>\text{5}x\text{ }=\pi -\frac{\pi }{6}=\frac{5\pi }{6}</math>. | ||
+ | |||
[[Image:4_4_2_e.gif|center]] | [[Image:4_4_2_e.gif|center]] | ||
+ | |||
+ | We obtain the remaining solutions by adding multiples of | ||
+ | <math>2\pi </math> | ||
+ | to the two solutions above: | ||
+ | |||
+ | |||
+ | <math>\text{5}x\text{ }=\frac{\pi }{6}+2n\pi </math> | ||
+ | and | ||
+ | <math>\text{5}x\text{ }=\frac{5\pi }{6}+2n\pi </math> | ||
+ | ( | ||
+ | <math>n</math> | ||
+ | an arbitrary integer), | ||
+ | |||
+ | or if we divide by | ||
+ | <math>\text{5}</math>: | ||
+ | |||
+ | |||
+ | <math>x\text{ }=\frac{\pi }{30}+\frac{2}{5}n\pi </math> | ||
+ | and | ||
+ | <math>x\text{ }=\frac{\pi }{6}+\frac{2}{5}n\pi </math> | ||
+ | ( | ||
+ | <math>n</math> | ||
+ | an arbitrary integer). |
Version vom 08:36, 1. Okt. 2008
This is almost the same equation as in exercise d. First, we determine the solutions to the equation when \displaystyle 0\le \text{5}x\le \text{2}\pi , and using the unit circle shows that there are two of these: \displaystyle \text{5}x\text{ }=\frac{\pi }{6} and \displaystyle \text{5}x\text{ }=\pi -\frac{\pi }{6}=\frac{5\pi }{6}.
We obtain the remaining solutions by adding multiples of \displaystyle 2\pi to the two solutions above:
\displaystyle \text{5}x\text{ }=\frac{\pi }{6}+2n\pi
and
\displaystyle \text{5}x\text{ }=\frac{5\pi }{6}+2n\pi
(
\displaystyle n
an arbitrary integer),
or if we divide by \displaystyle \text{5}:
\displaystyle x\text{ }=\frac{\pi }{30}+\frac{2}{5}n\pi
and
\displaystyle x\text{ }=\frac{\pi }{6}+\frac{2}{5}n\pi
(
\displaystyle n
an arbitrary integer).