Lösung 4.4:2b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.4:2b moved to Solution 4.4:2b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The equation
-
<center> [[Image:4_4_2b.gif]] </center>
+
<math>\cos x={1}/{2}\;</math>
-
{{NAVCONTENT_STOP}}
+
has the solution
 +
<math>x={\pi }/{3}\;</math>
 +
in the first quadrant, and the symmetric solution
 +
<math>x={2\pi -\pi }/{3}\;={5\pi }/{3}\;</math>
 +
in the fourth quadrant.
 +
 
[[Image:4_4_2_b.gif|center]]
[[Image:4_4_2_b.gif|center]]
 +
 +
Angle
 +
<math>{\pi }/{3}\;</math>
 +
Angle
 +
<math>{5\pi }/{3}\;</math>
 +
 +
 +
If we add multiples of
 +
<math>2\pi </math>
 +
to these two solutions, we obtain all the solutions
 +
 +
 +
<math>x={\pi }/{3}\;+2n\pi </math>
 +
and
 +
<math>x={5\pi }/{3}\;+2n\pi </math>
 +
 +
 +
where
 +
<math>n</math>
 +
is an arbitrary integer.

Version vom 13:40, 30. Sep. 2008

The equation \displaystyle \cos x={1}/{2}\; has the solution \displaystyle x={\pi }/{3}\; in the first quadrant, and the symmetric solution \displaystyle x={2\pi -\pi }/{3}\;={5\pi }/{3}\; in the fourth quadrant.


Angle \displaystyle {\pi }/{3}\; Angle \displaystyle {5\pi }/{3}\;


If we add multiples of \displaystyle 2\pi to these two solutions, we obtain all the solutions


\displaystyle x={\pi }/{3}\;+2n\pi and \displaystyle x={5\pi }/{3}\;+2n\pi


where \displaystyle n is an arbitrary integer.