Lösung 4.4:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.4:1d moved to Solution 4.4:1d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Because |
- | < | + | <math>\tan v=\frac{\sin v}{\cos v}</math>, the condition |
- | {{ | + | <math>\text{tan }v=\text{1 }</math> |
+ | gives | ||
+ | <math>\text{sin }v=\text{ cos }v</math>, i.e. we look for angles in the unit circle whose | ||
+ | <math>x</math> | ||
+ | - and | ||
+ | <math>y</math> | ||
+ | -coordinates are equal. | ||
+ | |||
+ | After drawing the unit circle and the line y=x, we see that there are two angles which satisfy these conditions, | ||
+ | <math>v={\pi }/{4}\;</math> | ||
+ | and | ||
+ | <math>v=\pi +{\pi }/{4}\;={5\pi }/{4}\;</math> | ||
+ | |||
+ | |||
[[Image:4_4_1_d.gif|center]] | [[Image:4_4_1_d.gif|center]] |
Version vom 12:38, 30. Sep. 2008
Because \displaystyle \tan v=\frac{\sin v}{\cos v}, the condition \displaystyle \text{tan }v=\text{1 } gives \displaystyle \text{sin }v=\text{ cos }v, i.e. we look for angles in the unit circle whose \displaystyle x - and \displaystyle y -coordinates are equal.
After drawing the unit circle and the line y=x, we see that there are two angles which satisfy these conditions, \displaystyle v={\pi }/{4}\; and \displaystyle v=\pi +{\pi }/{4}\;={5\pi }/{4}\;