Lösung 4.4:1b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.4:1b moved to Solution 4.4:1b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The easiest angle to find is
-
<center> [[Image:4_4_1b.gif]] </center>
+
<math>v={\pi }/{3}\;</math>
-
{{NAVCONTENT_STOP}}
+
in the first quadrant. When we draw the unit circle, we see that the angle which makes the same angle with the positive
 +
<math>x</math>
 +
-axis as
 +
<math>v={\pi }/{3}\;</math>, but is under the
 +
<math>x</math>
 +
-axis, also has a cosine value of
 +
<math>{1}/{2}\;</math>
 +
(same
 +
<math>x</math>
 +
-coordinate).
 +
 
[[Image:4_4_1_b.gif|center]]
[[Image:4_4_1_b.gif|center]]
 +
 +
There are thus two angles,
 +
<math>v={\pi }/{3}\;</math>
 +
and
 +
<math>v=2\pi -{\pi }/{3}\;={5\pi }/{3}\;</math>
 +
which have their cosine value equal to
 +
<math>\frac{1}{2}</math>.

Version vom 12:31, 30. Sep. 2008

The easiest angle to find is \displaystyle v={\pi }/{3}\; in the first quadrant. When we draw the unit circle, we see that the angle which makes the same angle with the positive \displaystyle x -axis as \displaystyle v={\pi }/{3}\;, but is under the \displaystyle x -axis, also has a cosine value of \displaystyle {1}/{2}\; (same \displaystyle x -coordinate).


There are thus two angles, \displaystyle v={\pi }/{3}\; and \displaystyle v=2\pi -{\pi }/{3}\;={5\pi }/{3}\; which have their cosine value equal to \displaystyle \frac{1}{2}.