Lösung 3.1:6b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | The root sign in the denominator lies in a quadratic term and we therefore expand first the quadratic | + | The root sign in the denominator lies in a quadratic term and we therefore expand first the quadratic |
- | + | ||
- | + | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | (\sqrt{3}-2)^2 |
- | + | &= (\sqrt{3}\,)^{2} - 2\cdot\sqrt{3}\cdot 2 + 2^{2}\\[5pt] | |
- | & =3-4\sqrt{3}+4=7-4\sqrt{3} \\ | + | &= 3-4\sqrt{3}+4\\[5pt] |
- | \end{align}</math> | + | &= 7-4\sqrt{3}\,\textrm{.} |
+ | \end{align}</math>}} | ||
Thus, | Thus, | ||
+ | {{Displayed math||<math>\frac{1}{(\sqrt{3}-2)^{2}-2} = \frac{1}{7-4\sqrt{3}-2} = \frac{1}{5-4\sqrt{3}}</math>}} | ||
- | + | and in the expression we can get rid of the root sign from the denominator by multiplying the top and bottom of the equation by the conjugate <math>5+4\sqrt{3}</math>, | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | and in the expression we can get rid of the root sign from the denominator by multiplying the top and bottom of the equation by the conjugate | + | |
- | <math>5+4\sqrt{3}</math>, | + | |
- | + | ||
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | + | \frac{1}{5-4\sqrt{3}} | |
- | & =\frac{5+4\sqrt{3}}{5^{2}-4^{2} | + | &= \frac{1}{5-4\sqrt{3}}\cdot \frac{5+4\sqrt{3}}{5+4\sqrt{3}}\\[5pt] |
- | & =\frac{5+4\sqrt{3}}{-23}=-\frac{5+4\sqrt{3}}{23} \\ | + | &= \frac{5+4\sqrt{3}}{5^{2}-(4\sqrt{3})^{2}}\\[5pt] |
- | \end{align}</math> | + | &= \frac{5+4\sqrt{3}}{5^{2}-4^{2}(\sqrt{3})^{2}}\\[5pt] |
+ | &= \frac{5+4\sqrt{3}}{25-16\cdot 3}\\[5pt] | ||
+ | &= \frac{5+4\sqrt{3}}{-23}\\[5pt] | ||
+ | &= -\frac{5+4\sqrt{3}}{23}\,\textrm{.} | ||
+ | \end{align}</math>}} |
Version vom 11:53, 30. Sep. 2008
The root sign in the denominator lies in a quadratic term and we therefore expand first the quadratic
Thus,
and in the expression we can get rid of the root sign from the denominator by multiplying the top and bottom of the equation by the conjugate \displaystyle 5+4\sqrt{3},