Lösung 3.1:6a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
We use the standard method and augment the fraction with the conjugate of the denominator
+
We use the standard method and augment the fraction with the conjugate of the denominator <math>\sqrt{5}+2</math>. Then the formula for the difference of two squares gives
-
<math>\sqrt{5}+2</math>. Then the conjugate rule gives
+
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
\frac{\sqrt{2}+3}{\sqrt{5}-2}
-
& \frac{\sqrt{2}+3}{\sqrt{5}-2}=\frac{\sqrt{2}+3}{\sqrt{5}-2}\centerdot \frac{\sqrt{5}+2}{\sqrt{5}+2}=\frac{\left( \sqrt{2}+3 \right)\left( \sqrt{5}+2 \right)}{\left( \sqrt{5} \right)^{2}-2^{2}} \\
+
&= \frac{\sqrt{2}+3}{\sqrt{5}-2}\cdot\frac{\sqrt{5}+2}{\sqrt{5}+2}\\[5pt]
-
& =\frac{\sqrt{2}\centerdot \sqrt{5}+\sqrt{2}\centerdot 2+3\centerdot \sqrt{5}+3\centerdot 2}{5-4}=\sqrt{2\centerdot 5}+2\sqrt{2}+3\sqrt{5}+6 \\
+
&= \frac{(\sqrt{2}+3)(\sqrt{5}+2)}{(\sqrt{5})^{2}-2^{2}}\\[5pt]
-
& =6+2\sqrt{2}+3\sqrt{5}+10 \\
+
&= \frac{\sqrt{2}\cdot\sqrt{5}+\sqrt{2}\cdot 2+3\cdot \sqrt{5}+3\cdot 2}{5-4}\\[5pt]
-
\end{align}</math>
+
&= \sqrt{2\cdot 5} + 2\sqrt{2} + 3\sqrt{5} + 6\\[5pt]
 +
&= 6+2\sqrt{2}+3\sqrt{5}+\sqrt{10}\,\textrm{.}
 +
\end{align}</math>}}

Version vom 11:41, 30. Sep. 2008

We use the standard method and augment the fraction with the conjugate of the denominator \displaystyle \sqrt{5}+2. Then the formula for the difference of two squares gives

Vorlage:Displayed math