Lösung 4.3:8a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Lösning 4.3:8a moved to Solution 4.3:8a: Robot: moved page) | |||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | |
| - | < | + | |
| - | {{ | + | We rewrite  | 
| + | <math>\text{tan }v</math> | ||
| + | on the left-hand side as  | ||
| + | <math>\frac{\sin v}{\cos v}</math>, so that | ||
| + | |||
| + | |||
| + | <math>\tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}</math> | ||
| + | |||
| + | |||
| + | If we then use the Pythagorean identity | ||
| + | |||
| + | |||
| + | <math>\cos ^{2}v+\sin ^{2}v=1</math> | ||
| + | |||
| + | |||
| + | and rewrite  | ||
| + | <math>\text{cos}^{\text{2}}v</math> | ||
| + | in the denominator as  | ||
| + | <math>\text{1}-\text{sin}^{\text{2}}v\text{ }</math>, we get what we are looking for on the right-hand side. The whole calculation is | ||
| + | |||
| + | |||
| + | <math>\tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}=\frac{\sin ^{2}v}{1-\sin ^{2}v}</math> | ||
Version vom 10:37, 30. Sep. 2008
We rewrite 
\displaystyle \text{tan }v
on the left-hand side as 
\displaystyle \frac{\sin v}{\cos v}, so that
\displaystyle \tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}
If we then use the Pythagorean identity
\displaystyle \cos ^{2}v+\sin ^{2}v=1
and rewrite 
\displaystyle \text{cos}^{\text{2}}v
in the denominator as 
\displaystyle \text{1}-\text{sin}^{\text{2}}v\text{ }, we get what we are looking for on the right-hand side. The whole calculation is
\displaystyle \tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}=\frac{\sin ^{2}v}{1-\sin ^{2}v}
 
		  