Lösung 4.3:6a
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.3:6a moved to Solution 4.3:6a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | If we think of the angle v as an angle in the unit circle, then | |
- | < | + | <math>v</math> |
- | + | lies in the fourth quadrant and has | |
- | + | <math>x</math> | |
- | < | + | -coordinate |
- | {{ | + | <math>\frac{3}{4}</math>. |
+ | |||
[[Image:4_3_6_a1.gif|center]] | [[Image:4_3_6_a1.gif|center]] | ||
+ | |||
+ | If we enlarge the fourth quadrant, we see that we can make a right-angled triangle with hypotenuse equal to | ||
+ | <math>\text{1}</math> | ||
+ | and an opposite side equal to | ||
+ | <math>\frac{3}{4}</math>. | ||
+ | |||
[[Image:4_3_6_a2.gif|center]] | [[Image:4_3_6_a2.gif|center]] | ||
+ | |||
+ | Using Pythagoras' theorem, it is possible to determine the remaining side from | ||
+ | |||
+ | |||
+ | |||
+ | <math>b^{2}+\left( \frac{3}{4} \right)^{2}=1^{2}</math> | ||
+ | |||
+ | |||
+ | which gives that | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & b^{2}+\left( \frac{3}{4} \right)^{2}=1^{2} \\ | ||
+ | & b=\sqrt{1-\left( \frac{3}{4} \right)^{2}}=\sqrt{1-\frac{9}{16}}=\sqrt{\frac{7}{16}}=\frac{\sqrt{7}}{4} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Because the angle | ||
+ | <math>v</math> | ||
+ | belongs to the fourth quadrant, its | ||
+ | <math>y</math> | ||
+ | -coordinate is negative and is therefore equal to | ||
+ | <math>-b</math>, i.e. | ||
+ | |||
+ | |||
+ | <math>\sin v=-\frac{\sqrt{7}}{4}</math> | ||
+ | |||
+ | |||
+ | Thus, we have directly that | ||
+ | |||
+ | |||
+ | <math>\tan v=\frac{\sin v}{\cos v}=\frac{-\frac{\sqrt{7}}{4}}{\frac{3}{4}}=-\frac{\sqrt{7}}{3}</math> |
Version vom 09:12, 30. Sep. 2008
If we think of the angle v as an angle in the unit circle, then \displaystyle v lies in the fourth quadrant and has \displaystyle x -coordinate \displaystyle \frac{3}{4}.
If we enlarge the fourth quadrant, we see that we can make a right-angled triangle with hypotenuse equal to \displaystyle \text{1} and an opposite side equal to \displaystyle \frac{3}{4}.
Using Pythagoras' theorem, it is possible to determine the remaining side from
\displaystyle b^{2}+\left( \frac{3}{4} \right)^{2}=1^{2}
which gives that
\displaystyle \begin{align}
& b^{2}+\left( \frac{3}{4} \right)^{2}=1^{2} \\
& b=\sqrt{1-\left( \frac{3}{4} \right)^{2}}=\sqrt{1-\frac{9}{16}}=\sqrt{\frac{7}{16}}=\frac{\sqrt{7}}{4} \\
\end{align}
Because the angle
\displaystyle v
belongs to the fourth quadrant, its
\displaystyle y
-coordinate is negative and is therefore equal to
\displaystyle -b, i.e.
\displaystyle \sin v=-\frac{\sqrt{7}}{4}
Thus, we have directly that
\displaystyle \tan v=\frac{\sin v}{\cos v}=\frac{-\frac{\sqrt{7}}{4}}{\frac{3}{4}}=-\frac{\sqrt{7}}{3}