Lösung 3.1:2f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
The cube root of a number is the same thing as the number raised to the power
The cube root of a number is the same thing as the number raised to the power
-
<math>{1}/{3}\;</math>, i.e.
+
1/3, i.e. <math>\sqrt[3]{a} = a^{1/3}\,\textrm{.}</math> If we therefore write the number 8 as a product of its smallest possible integer factors
-
<math>\sqrt[3]{a}=a^{{1}/{3}\;}</math>
+
-
If we therefore write the number
+
-
<math>\text{8}</math>
+
-
as a product of its smallest possible integer factors
+
-
 
+
-
 
+
-
<math>8=2\centerdot 4=2\centerdot 2\centerdot 2=2^{3}</math>
+
 +
{{Displayed math||<math>8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^{3}</math>}}
we see that
we see that
 +
{{Displayed math||<math>\sqrt[3]{8} = \sqrt[3]{2^{3}} = \bigl(2^{3}\bigr)^{1/3} = 2^{3\cdot\frac{1}{3}} = 2^{1} = 2\,\textrm{.}</math>}}
-
<math>\sqrt[3]{8}=\sqrt[3]{2^{3}}=\left( 2^{3} \right)^{{1}/{3}\;}=2^{3\centerdot \frac{1}{3}}=2^{1}=2</math>.
 
-
NOTE: Taking the cube root can thus be seen as cancelling the operation of raising a number to the power
+
Note: Taking the cube root can thus be seen as cancelling the operation of raising a number to the power 3, i.e. <math>\sqrt[3]{5^{3}} = 5\,</math>, <math>\ \sqrt[3]{6^{3}} = 6\,</math> etc.
-
<math>\text{3}</math>, i.e.
+
-
<math>\sqrt[3]{5^{3}}=5,\quad \sqrt[3]{6^{3}}=6</math>
+
-
etc.
+

Version vom 08:34, 30. Sep. 2008

The cube root of a number is the same thing as the number raised to the power 1/3, i.e. \displaystyle \sqrt[3]{a} = a^{1/3}\,\textrm{.} If we therefore write the number 8 as a product of its smallest possible integer factors

Vorlage:Displayed math

we see that

Vorlage:Displayed math


Note: Taking the cube root can thus be seen as cancelling the operation of raising a number to the power 3, i.e. \displaystyle \sqrt[3]{5^{3}} = 5\,, \displaystyle \ \sqrt[3]{6^{3}} = 6\, etc.