Lösung 2.3:10a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Individually, the inequalities
+
Individually, the inequalities <math>y\ge x^{2}</math> and <math>y\le 1</math> define the region above the parabola <math>y=x^{2}</math> and under the line <math>y=1</math>, respectively.
-
<math>y\ge x^{\text{2 }}</math>
+
 
-
and
+
{| align="center"
-
<math>y\le \text{1 }</math>
+
|align="center"|[[Image:2_3_10_a-1.gif|center]]
-
define the region above the parabola
+
|width="10px"|&nbsp;
-
<math>y=x^{\text{2}}\text{ }</math>
+
|align="center"|[[Image:2_3_10_a-2.gif|center]]
-
and under the line
+
|-
-
<math>y=\text{1}</math>, respectively.
+
|align="center"|<small>The region ''y''&nbsp;≥&nbsp;''x''²</small>
 +
||
 +
|align="center"|<small>The region ''y''&nbsp;≤&nbsp;1</small>
 +
|}
 +
 
 +
Those points which satisfy both inequalities lie in the region above the parabola, but below the line <math>y=1\,</math>.
-
[[Image:2_3_10_a.gif|center]]
 
-
Those points which satisfy both inequalities lie in the region above the parabola, but below the line
 
-
<math>y=\text{1}</math>
 
[[Image:2_3_10_a2.gif|center]]
[[Image:2_3_10_a2.gif|center]]

Version vom 14:25, 29. Sep. 2008

Individually, the inequalities \displaystyle y\ge x^{2} and \displaystyle y\le 1 define the region above the parabola \displaystyle y=x^{2} and under the line \displaystyle y=1, respectively.

 
The region y ≥ x² The region y ≤ 1

Those points which satisfy both inequalities lie in the region above the parabola, but below the line \displaystyle y=1\,.