Lösung 2.3:8c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
By completing the square, we can rewrite the function as
By completing the square, we can rewrite the function as
 +
{{Displayed math||<math>f(x) = x^{2}-6x+11 = (x-3)^{2} - 3^{2} + 11 = (x-3)^{2} + 2,</math>}}
-
<math>f\left( x \right)=x^{2}-6x+11=\left( x-3 \right)^{2}-3^{2}+11=\left( x-3 \right)^{2}+2,</math>
+
and when the function is written in this way, we see that the graph <math>y = (x-3)^{2} + 2</math> is the same curve as the parabola <math>y=x^{2}</math>, but shifted two units up and three units to the right (see sub-exercise a and b).
-
and when the function is written in this way, we can see that the graph
 
-
<math>y=\left( x-3 \right)^{2}+2</math>
 
-
is the same curve as the parabola
 
-
<math>y=x^{2}</math>, but shifted two units up and three units to the right (see sub-exercise d and e).
 
-
 
+
{| align="center"
-
[[Image:2_3_8_c.gif|center]]
+
|align="center"|[[Image:2_3_8_c-1.gif|center]]
 +
||&nbsp;
 +
|align="center"|[[Image:2_3_8_c-2.gif|center]]
 +
|-
 +
|align="center"|<small>The graph of ''f''(''x'')&nbsp;=&nbsp;''x''²</small>
 +
||
 +
|align="center"|<small>The graph of ''f''(''x'')&nbsp;=&nbsp;''x''²&nbsp;-&nbsp;6x&nbsp;+&nbsp;11</small>
 +
|}

Version vom 13:10, 29. Sep. 2008

By completing the square, we can rewrite the function as

Vorlage:Displayed math

and when the function is written in this way, we see that the graph \displaystyle y = (x-3)^{2} + 2 is the same curve as the parabola \displaystyle y=x^{2}, but shifted two units up and three units to the right (see sub-exercise a and b).


 
The graph of f(x) = x² The graph of f(x) = x² - 6x + 11