Lösung 4.3:4f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.3:4f moved to Solution 4.3:4f: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Using the addition formula for cosine, we can express
-
<center> [[Image:4_3_4f.gif]] </center>
+
<math>\cos \left( v-{\pi }/{3}\; \right)</math>
-
{{NAVCONTENT_STOP}}
+
in terms of
 +
<math>\text{cos }v</math>
 +
and
 +
<math>\text{sin }v</math>,
 +
 
 +
 
 +
<math>\cos \left( v-\frac{\pi }{3} \right)=\cos v\centerdot \cos \frac{\pi }{3}+\sin v\centerdot \sin \frac{\pi }{3}</math>
 +
 
 +
 
 +
Since
 +
<math>\text{cos }v=b\text{ }</math>
 +
and
 +
<math>\sin v=\sqrt{1-b^{2}}</math>
 +
we obtain
 +
 
 +
 
 +
<math>\cos \left( v-\frac{\pi }{3} \right)=b\centerdot \frac{1}{2}+\sqrt{1-b^{2}}\centerdot \frac{\sqrt{3}}{2}</math>

Version vom 12:00, 29. Sep. 2008

Using the addition formula for cosine, we can express \displaystyle \cos \left( v-{\pi }/{3}\; \right) in terms of \displaystyle \text{cos }v and \displaystyle \text{sin }v,


\displaystyle \cos \left( v-\frac{\pi }{3} \right)=\cos v\centerdot \cos \frac{\pi }{3}+\sin v\centerdot \sin \frac{\pi }{3}


Since \displaystyle \text{cos }v=b\text{ } and \displaystyle \sin v=\sqrt{1-b^{2}} we obtain


\displaystyle \cos \left( v-\frac{\pi }{3} \right)=b\centerdot \frac{1}{2}+\sqrt{1-b^{2}}\centerdot \frac{\sqrt{3}}{2}