Lösung 2.3:7c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If we complete the square
+
If we complete the square,
 +
{{Displayed math||<math>x^{2}+x+1=\Bigl(x+\frac{1}{2}\Bigr)^{2}-\Bigl(\frac{1}{2} \Bigr)^{2}+1 = \Bigl(x+\frac{1}{2}\Bigr)^{2} + \frac{3}{4}\,,</math>}}
-
<math>x^{2}+x+1=\left( x+\frac{1}{2} \right)^{2}-\left( \frac{1}{2} \right)^{2}+1=\left( x+\frac{1}{2} \right)^{2}+\frac{3}{4}</math>
+
we see on the right-hand side that we can make the expression arbitrarily large simply by choosing <math>x+\tfrac{1}{2}</math> sufficiently large. Hence, there is no maximum value.
-
 
+
-
 
+
-
we see on the right-hand side that we can make the expression arbitrarily large simply by choosing
+
-
<math>x+\frac{1}{2}</math>
+
-
sufficiently large. Hence, there is no maximum value.
+

Version vom 11:58, 29. Sep. 2008

If we complete the square,

Vorlage:Displayed math

we see on the right-hand side that we can make the expression arbitrarily large simply by choosing \displaystyle x+\tfrac{1}{2} sufficiently large. Hence, there is no maximum value.