Lösung 4.3:4e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.3:4e moved to Solution 4.3:4e: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | The addition formula for sine gives us that |
| - | < | + | |
| - | {{ | + | |
| + | <math>\sin \left( v+\frac{\pi }{4} \right)=\sin v\centerdot \cos \frac{\pi }{4}+\cos v\centerdot \sin \frac{\pi }{4}.</math> | ||
| + | |||
| + | |||
| + | Because we know from exercise b that | ||
| + | <math>\sin v=\sqrt{1-b^{2}}</math> | ||
| + | we use that | ||
| + | <math>\cos \frac{\pi }{4}=\sin \frac{\pi }{4}=\frac{1}{\sqrt{2}}</math> | ||
| + | to obtain | ||
| + | |||
| + | <math>\sin \left( v+\frac{\pi }{4} \right)=\sqrt{1-b^{2}}\centerdot \frac{1}{\sqrt{2}}+b\centerdot \frac{1}{\sqrt{2}}.</math> | ||
Version vom 11:54, 29. Sep. 2008
The addition formula for sine gives us that
\displaystyle \sin \left( v+\frac{\pi }{4} \right)=\sin v\centerdot \cos \frac{\pi }{4}+\cos v\centerdot \sin \frac{\pi }{4}.
Because we know from exercise b that
\displaystyle \sin v=\sqrt{1-b^{2}}
we use that
\displaystyle \cos \frac{\pi }{4}=\sin \frac{\pi }{4}=\frac{1}{\sqrt{2}}
to obtain
\displaystyle \sin \left( v+\frac{\pi }{4} \right)=\sqrt{1-b^{2}}\centerdot \frac{1}{\sqrt{2}}+b\centerdot \frac{1}{\sqrt{2}}.
