Lösung 4.3:4d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.3:4d moved to Solution 4.3:4d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
With the formula for double angles and the Pythagorean identity
-
<center> [[Image:4_3_4d.gif]] </center>
+
<math>\cos ^{2}v+\sin ^{2}v=1</math>, we can express
-
{{NAVCONTENT_STOP}}
+
<math>\text{cos 2}v\text{ }</math>
 +
in terms of
 +
<math>\text{cos }v</math>,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \text{cos 2}v=\cos ^{2}v-\sin ^{2}v=\cos ^{2}v-\left( 1-\cos ^{2}v \right) \\
 +
& =2\cos ^{2}v-1=2b^{2}-1 \\
 +
\end{align}</math>

Version vom 11:48, 29. Sep. 2008

With the formula for double angles and the Pythagorean identity \displaystyle \cos ^{2}v+\sin ^{2}v=1, we can express \displaystyle \text{cos 2}v\text{ } in terms of \displaystyle \text{cos }v,


\displaystyle \begin{align} & \text{cos 2}v=\cos ^{2}v-\sin ^{2}v=\cos ^{2}v-\left( 1-\cos ^{2}v \right) \\ & =2\cos ^{2}v-1=2b^{2}-1 \\ \end{align}