Lösung 2.3:6c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
If we complete the square of the expression, we have that | If we complete the square of the expression, we have that | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | x^{2} - 5x + 7 &= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} + 7\\[5pt] | ||
+ | &= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{28}{4}\\[5pt] | ||
+ | &= \Bigl(x-\frac{5}{2}\Bigr)^{2} + \frac{3}{4} | ||
+ | \end{align}</math>}} | ||
- | + | and because <math>\bigl(x-\tfrac{5}{2}\bigr)^{2}</math> is a quadratic, this term assumes a minimal value zero when <math>x=5/2\,</math>. This shows that the polynomial's smallest value is <math>\tfrac{3}{4}</math>. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | and because | + | |
- | <math>\ | + | |
- | is a quadratic, this term | + | |
- | <math>x= | + | |
- | <math>\ | + |
Version vom 11:45, 29. Sep. 2008
If we complete the square of the expression, we have that
and because \displaystyle \bigl(x-\tfrac{5}{2}\bigr)^{2} is a quadratic, this term assumes a minimal value zero when \displaystyle x=5/2\,. This shows that the polynomial's smallest value is \displaystyle \tfrac{3}{4}.