Lösung 4.3:3c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.3:3c moved to Solution 4.3:3c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
With the help of the Pythagorean identity, we can express
-
<center> [[Image:4_3_3c.gif]] </center>
+
<math>\cos v</math>
-
{{NAVCONTENT_STOP}}
+
in terms of
 +
<math>\text{sin }v</math>,
 +
 
 +
 
 +
<math>\cos ^{2}v+\sin ^{2}v=1</math>
 +
 
 +
 
 +
In addition, we know that the angle
 +
<math>v</math>
 +
lies between
 +
<math>-{\pi }/{2}\;</math>
 +
and
 +
<math>{\pi }/{2}\;</math>, i.e. either in the first or fourth quadrant, where angles always have a positive
 +
<math>x</math>
 +
-coordinate (cosine value); thus, we can conclude that
 +
 
 +
 
 +
<math>\cos v=\sqrt{1-\text{sin}^{2}\text{ }v}=\sqrt{1-a^{2}}</math>

Version vom 10:58, 29. Sep. 2008

With the help of the Pythagorean identity, we can express \displaystyle \cos v in terms of \displaystyle \text{sin }v,


\displaystyle \cos ^{2}v+\sin ^{2}v=1


In addition, we know that the angle \displaystyle v lies between \displaystyle -{\pi }/{2}\; and \displaystyle {\pi }/{2}\;, i.e. either in the first or fourth quadrant, where angles always have a positive \displaystyle x -coordinate (cosine value); thus, we can conclude that


\displaystyle \cos v=\sqrt{1-\text{sin}^{2}\text{ }v}=\sqrt{1-a^{2}}