Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 4.3:3b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.3:3b moved to Solution 4.3:3b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The angle
-
<center> [[Image:4_3_3b.gif]] </center>
+
<math>\pi -v\text{ }</math>
-
{{NAVCONTENT_STOP}}
+
makes the same angle with the negative
 +
<math>x</math>
 +
-axis as the angle
 +
<math>v</math>
 +
makes with the positive
 +
<math>x</math>
 +
-axis and this means that
 +
<math>\pi -v\text{ }</math>
 +
is the reflection of
 +
<math>v</math>
 +
in the y-axis.
 +
 
[[Image:4_3_3_b.gif|center]]
[[Image:4_3_3_b.gif|center]]
 +
 +
Under such reflection, the angle's
 +
<math>y</math>
 +
-coordinate does not change (but the
 +
<math>x</math>
 +
-coordinate changes sign) and therefore
 +
<math>\text{sin}\left( \pi -v \right)=\text{sin }v\text{ }=a</math>.

Version vom 10:51, 29. Sep. 2008

The angle v makes the same angle with the negative x -axis as the angle v makes with the positive x -axis and this means that v is the reflection of v in the y-axis.

Under such reflection, the angle's y -coordinate does not change (but the x -coordinate changes sign) and therefore sinv=sin v =a .