Lösung 2.3:4c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
The equation
+
The equation <math>(x-3)(x-\sqrt{3}\,)=0</math> is a second-degree equation which has <math>x=3</math> and <math>x=\sqrt{3}</math> as roots; when <math>x=3</math>, the first factor is zero and when <math>x=\sqrt{3}</math> the second factor is zero.
-
<math>\left( x-\text{3} \right)\left( x-\sqrt{\text{3}} \right)=0</math>
+
-
is a second-degree equation which has
+
-
<math>x=\text{3 }</math>
+
-
and
+
-
<math>x=\sqrt{\text{3}}</math>
+
-
as roots; when
+
-
<math>x=\text{3 }</math>, the first factor is zero and when
+
-
<math>x=\sqrt{\text{3}}</math>
+
-
the second factor is zero.
+
-
If we expand the equations left-hand side, we get the equation in standard form,
+
If we expand the equation's left-hand side, we get the equation in standard form,
 +
{{Displayed math||<math>\begin{align}
 +
(x-3)(x-\sqrt{3}\,)
 +
&= x^{2}-\sqrt{3}x-3x+3\sqrt{3}\\[5pt]
 +
&= x^{2}-(3+\sqrt{3}\,)x+3\sqrt{3}=0\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
 
-
& \left( x-\text{3} \right)\left( x-\sqrt{\text{3}} \right)=x^{2}-\sqrt{\text{3}}x-3x+3\sqrt{\text{3}} \\
 
-
& =x^{2}-\left( 3+\sqrt{\text{3}} \right)x+3\sqrt{\text{3}}=0 \\
 
-
\end{align}</math>
 
 +
Note: the general answer is
-
NOTE: the general answer is,
+
{{Displayed math||<math>ax^{2}-(3+\sqrt{3}\,)ax+3\sqrt{3}a=0\,,</math>}}
-
 
+
where <math>a\ne 0</math> is a constant.
-
<math>ax^{2}-\left( 3+\sqrt{\text{3}} \right)ax+3\sqrt{\text{3}}a=0</math>
+
-
 
+
-
 
+
-
where
+
-
<math>a\ne 0</math>
+
-
is a constant.
+

Version vom 10:39, 29. Sep. 2008

The equation \displaystyle (x-3)(x-\sqrt{3}\,)=0 is a second-degree equation which has \displaystyle x=3 and \displaystyle x=\sqrt{3} as roots; when \displaystyle x=3, the first factor is zero and when \displaystyle x=\sqrt{3} the second factor is zero.

If we expand the equation's left-hand side, we get the equation in standard form,

Vorlage:Displayed math


Note: the general answer is

Vorlage:Displayed math

where \displaystyle a\ne 0 is a constant.