Lösung 4.2:5c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.2:5c moved to Solution 4.2:5c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we express the angle |
- | < | + | <math>\text{33}0^{\circ }</math> |
- | {{ | + | in radians, we obtain |
+ | |||
+ | |||
+ | <math>\text{33}0^{\circ }=\text{33}0^{\circ }\centerdot \frac{\pi }{180^{\circ }}</math> | ||
+ | radians | ||
+ | <math>=\frac{11\pi }{6}</math> | ||
+ | radians | ||
+ | |||
+ | and from exercise 3.3:1g, we know that | ||
+ | |||
+ | |||
+ | <math>\cos 330^{\circ }=\cos \frac{11\pi }{6}=\frac{\sqrt{3}}{2}</math>. |
Version vom 08:09, 29. Sep. 2008
If we express the angle \displaystyle \text{33}0^{\circ } in radians, we obtain
\displaystyle \text{33}0^{\circ }=\text{33}0^{\circ }\centerdot \frac{\pi }{180^{\circ }}
radians
\displaystyle =\frac{11\pi }{6}
radians
and from exercise 3.3:1g, we know that
\displaystyle \cos 330^{\circ }=\cos \frac{11\pi }{6}=\frac{\sqrt{3}}{2}.