Lösung 4.2:5c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.2:5c moved to Solution 4.2:5c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we express the angle
-
<center> [[Image:4_2_5c.gif]] </center>
+
<math>\text{33}0^{\circ }</math>
-
{{NAVCONTENT_STOP}}
+
in radians, we obtain
 +
 
 +
 
 +
<math>\text{33}0^{\circ }=\text{33}0^{\circ }\centerdot \frac{\pi }{180^{\circ }}</math>
 +
radians
 +
<math>=\frac{11\pi }{6}</math>
 +
radians
 +
 
 +
and from exercise 3.3:1g, we know that
 +
 
 +
 
 +
<math>\cos 330^{\circ }=\cos \frac{11\pi }{6}=\frac{\sqrt{3}}{2}</math>.

Version vom 08:09, 29. Sep. 2008

If we express the angle \displaystyle \text{33}0^{\circ } in radians, we obtain


\displaystyle \text{33}0^{\circ }=\text{33}0^{\circ }\centerdot \frac{\pi }{180^{\circ }} radians \displaystyle =\frac{11\pi }{6} radians

and from exercise 3.3:1g, we know that


\displaystyle \cos 330^{\circ }=\cos \frac{11\pi }{6}=\frac{\sqrt{3}}{2}.